

D2.1.3 INGESTION SERVICES - 2ND

RELEASE

Advanced Search Services and Enhanced

Technological Solutions for the European Digital

Library

Grant Agreement Number: 250527

Funding schema: Best Practice Network

Deliverable D2.1.3 WP2.1

Prototype

V.1.3 – March 31 2012

Document. ref.: ASSETS.D2.1.3.CNR.WP2.1.V1.3

ASSETS Ingestion Services – 2nd release D2.1.3 V1.3

Programme Name: ICT PSP

Project Number: 250527

Project Title: ASSETS

Partners: .. Coordinator: ENG (IT)

Contractors:

Document Number: D2.1.3

Work-Package:............................... WP2.1

Deliverable Type: Prototype

Contractual Date of Delivery: 31-January-2012

Actual Date of Delivery: 31-March-2012

Title of Document: Ingestion Services – 2
nd

 release

Author(s): Andrea Esuli (CNR)

... Giacomo Berardi (CNR)

... Diego Marcheggiani (CNR)

... Fabrizio Sebastiani (CNR)

... Sergiu Gordea (AIT)

... Oscar Täckström (SICS)

Approval of this report APPROVED – Luigi Briguglio (ENG)

Summary of this report: see Executive Summary

History: .. see Change History

Keyword List: ASSETS, Ingestion, Classification, Extraction,

Metadata

Availability This report is:

X public

ChangeChangeChangeChange HistoryHistoryHistoryHistory
Version Date Status Author

(Partner)

Description

0.1 03/01/2012 Draft AE (CNR) Initial draft, by integrating

contributions from ASSETS

wiki and dev. environment

0.5 08/03/2012 Draft AE (CNR) Release for internal review

0.6 12/03/2012 Review

Ready

SG (AIT) Added the last information

about packaging and

configuration

1.0 23/03/2012 Pre Final AE (CNR) Feedback from reviewers

1.1 29/03/2012 Pre Final SG (AIT) Check and revision from

Technical Director

1.2 30/03/2012 Final AE(CNR) Final version

1.3 31/03/2012 Final LB (ENG) APPROVAL AND RELEASE

ASSETS Ingestion Services – 2nd release D2.1.3 V1.3

Table of Contents

1. INTRODUCTION 2

2. SCIENTIFIC BACKGROUND 4

2.1 KNOWLEDGE EXTRACTION FROM METADATA RECORDS 4
2.1.1 A formal definition of information extraction 5
2.1.2 Conditional random fields 6
2.1.3 References 7

2.2 AUTOMATIC CLASSIFICATION OF METADATA RECORDS 8
2.2.1 TreeBoost.MH: A hierarchical version of AdaBoost.MH for multi-label TC 9
2.2.2 Related work 12
2.2.3 References 12

3. SOFTWARE REQUIREMENTS OVERVIEW 14

3.1 KNOWLEDGE EXTRACTION 14
3.1.1 Problem statement 14
3.1.2 Product position statement 14
3.1.3 Stakeholder Descriptions 14
3.1.4 User Environment 15
3.1.5 Feature or Functionality Overview 15
3.1.6 System Qualities 15
3.1.7 System Constraints 16
3.1.8 System Compliance 16
3.1.9 System Documentation 16

3.2 METADATA CLASSIFICATION SERVICE 16
3.2.1 Problem Statement 17
3.2.2 Product Position Statement 17
3.2.3 Stakeholder Descriptions 17
3.2.4 User Environment 18
3.2.5 Feature or Functionality Overview 18
3.2.6 System Qualities 18
3.2.7 System Constraints 19
3.2.8 System Compliance 19
3.2.9 System Documentation 19

3.3 INGESTION WORKFLOW SERVICE 20
3.3.1 Problem statement 20
3.3.2 Functionality overview 21
3.3.3 System Qualities 22

4. TECHNICAL DOCUMENTATION: 23

4.1 UML DIAGRAMS 23
4.1.1 Knowledge extraction service 23
4.1.2 Metadata classification service 27
4.1.3 Ingestion workflow management 31

4.2 SERVICE APIS 33
4.2.1 Knowledge extraction service 33
4.2.2 Metadata classification service 38
4.2.3 Ingestion workflow management service 41

ASSETS Ingestion Services – 2nd release D2.1.3 V1.3

4.3 SOFTWARE PACKAGING 46
4.4 INSTALLATION AND CONFIGURATION 47

5. USER MANUAL 49

5.1 KNOWLEDGE EXTRACTION SERVICE 49
5.1.1 Training set definition guidelines 49
5.1.2 Training data format 50
5.1.3 Stand-alone test user interface 54

5.2 METADATA CLASSIFICATION SERVICE 59
5.2.1 Training set definition guidelines 59
5.2.2 Training data format 60
5.2.3 Stand-alone test user interface 65

5.3 INGESTION WORKFLOW GUI 70
5.3.1 Enrichment model learning panel 70
5.3.2 Test enrichment panel 72
5.3.3 Knowledge extraction screen 74
5.3.4 Metadata classification screen 75

6. EVALUATION OF THE SERVICES 77

6.1 KNOWLEDGE EXTRACTION SERVICE 77
6.2 METADATA CLASSIFICATION SERVICE 79

7. CONCLUDING REMARKS 82

8. APPENDIX A 83

8.1 TRANING SET XSD SCHEMA FOR THE KNOWLEDGE EXTRACTION SERVICE 83
8.2 TRAINING SET XML EXAMPLE FOR THE KNOWLEDGE EXTRACTION SERVICE 85

9. APPENDIX B 88

9.1 TRANING SET XSD SCHEMA FOR THE METADATA CLASSIFICATION SERVICE 88
9.2 TRAINING SET XML EXAMPLE FOR THE METADATA CLASSIFICATION SERVICE 89

ASSETS Ingestion Services – 2nd release D2.1.3 V1.3

Table of Figures

Figure 1 Aggregators in the Europeana organisation mode 20

Figure 2 The Europeana Ingestion Process 21

Figure 3 Flow of events for the training of the extraction service 24

Figure 4 Flow of the events for the enrichment process based on the extraction service 26

Figure 5 Flow of events for the training of the classification service 28

Figure 6 Flow of the events for the enrichment process based on the classification service 30

Figure 7 Activity diagram for ingestion workflow management 32

Figure 8 Knowledge Extraction Data Model 35

Figure 9 Knowledge Extraction REST API 36

Figure 10 Knowledge Extraction API 37

Figure 11 Metadata Classification Service API 39

Figure 12 Metadata Classification REST API 40

Figure 13 Assets Ingestion Panel API 45

Figure 14 Enrichment Service API 45

Figure 15 Test GUI for knowledge extraction 55

Figure 16 Selection of training file 56

Figure 17 Output of training process and selection of the trained model for enrichment of

metadata records 56

Figure 18 Selection of an XML file for enrichment 57

Figure 19 Enrichment of an XML file 58

Figure 20 Enrichment of a custom-made metadata record 59

Figure 21 Test GUI for metadata classification 66

Figure 22 Selection of training file 67

Figure 23 Output of training process and selection of the trained model for enrichment of

metadata records 67

Figure 24 Selection of an XML file for enrichment 68

Figure 25 Enrichment of an XML file 69

Figure 26 Enrichment of a custom-made metadata record 70

Figure 27 Enrichment model learning screen 71

Figure 28 Test enrichment screen – object selection 73

Figure 29 Test enrichment screen – enrichment result 74

Figure 30 Knowledge extraction screen – enrichment invocation 74

Figure 31 Knowledge extraction screen – enrichment results 75

ASSETS Ingestion Services – 2nd release D2.1.3 V1.3

Figure 32 Metadata classification screen 76

ASSETS Ingestion Services – 2nd release Page 1 D2.1.3 V1.3

Executive Summary

This document
1
 contains the revised and final specification, technical documentation, and

user documentation for the services developed within tasks “T2.1.2 Knowledge extraction”,

“T2.1.3 Metadata classification”, both of which are under the responsibility of CNR, and task

“T2.1.4 Ingestion workflow management and Integration”, which is under the responsibility

of AIT.

The enrichment services are based on a supervised learning approach, i.e., a learning

algorithm is trained on examples of manually annotated records; the learning process

generates an enrichment model, which is then used to perform the automatic enrichment.

After providing a brief introduction on the Assets enrichment services (Section 1), the

scientific background on this process is presented (Section 2).

The enrichment modules are implemented as Web-Services being exposed for remote

invocation through their rest Interface. The ingestion workflow service connects to them

through their client interfaces and provides the users with a web interface to perform the

training and automatic enrichment of metadata collections. The software requirements and

the technical implementation details are reported in Sections 3 and 4, while Section 5

contains the user manual. Section 6 reports the experimental results aimed at determining

the quality of the automatic enrichment process and the guidelines used for the creation

training sets, as well.

1 Part of the content of this deliverable already appears in Deliverable 2.0.4 “The ASSET APIs” and in Deliverable 2.1.1 “Specification of

Ingestion Services' delivered at M12.

ASSETS Ingestion Services – 2nd release Page 2 D2.1.3 V1.3

1. Introduction

The objective of WP2.1 is to implement a set of services that provide automatic enrichment

of metadata records to the ASSETS platform.

The developed services allow ASSETS professional users to:

(i) automatically identify and annotate, within metadata records, pieces of text

that denote relevant entities (T2.1.2 “knowledge extraction from metadata

records”)

(ii) automatically classify the metadata records according to a set of categories,

possibly organized into a taxonomy, relevant for the domain (T2.1.3 “metadata

classification”).

The invocation of the services is integrated into the ingestion management tools developed

in collaboration with Europeana and “The European Library” (TEL). The mentioned tools will

support the back office processes in both these institutions (T2.1.4 “ingestion workflow

management”).

These tasks are made complex by the presence of different content providers, within the

ASSETS consortium and within Europeana, which have been concerned with different types

of content (i.e. text, image, audio, video) and different languages (i.e. there are 27

languages used in Europeana by now). There is a need thus to implement the above-

mentioned services in a way that addresses this diversity of content providers, content

types, and languages, and in a way that possibly allows new content providers, with new

content types described by metadata expressed in new languages, to be also addressed with

a minimum additional effort.

As a consequence, the services have been developed according to a supervised learning

methodology. Essentially, this means that a new content provider will be able to set up a

system for enriching its own metadata by providing to the system a “training” set of

enriched metadata records. The system would use these enriched metadata records as

indications, or examples, of what enriching metadata records from this content provider

means, and would then generate an “automatic enricher” of metadata records provided by

this content provider. This mechanism allows to set up automatic metadata enrichers for

any type of content provider, any type of content, and any language; of course, adequate

training sets of manually enriched metadata records must be given as input.

This supervised learning metaphor underlies all three services tackled within WP2.1.

However, its algorithmic realization for the considered services is different, since the

individual tasks are different in nature. For instance, T2.1.3 is a task that supports the

enrichment of metadata records as a whole by classifying them and will be tackled via

automatic text classification technologies. On the other hand, T2.1.2 is a task that supports

the enrichment of metadata records not by annotating the full record, but by annotating

individual sequences of words within the record. Therefore the knowledge extraction makes

use of automatic sequence learning (“information extraction”) technologies.

The integration of the enrichment service execution in a unified workflow (UIM) is achieved

web based technologies within the scope of T2.1.4. In this document, we will focus on the

description of both the GUI interface. The UIM, as the technical infrastructure used for

ASSETS Ingestion Services – 2nd release Page 3 D2.1.3 V1.3

workflow execution and plug-in orchestration have been described in the deliverable D2.1.1

SPECIFICATION OF INGESTION SERVICES.

The rest of the document contains a brief scientific background to the machine learning

method on which the services are based, the description of software requirements for the

services, their technical specification, the user manual which describes the format for

training data and how to use the test interface, and the evaluation of the quality of the

services, based on objective cross-validation experiments.

ASSETS Ingestion Services – 2nd release Page 4 D2.1.3 V1.3

2. Scientific background

This section gives background information about the machine learning methods adopted for

the implementation of the enrichment services.

2.1 Knowledge Extraction from Metadata Records

T.2.1.2 has to do with automatically annotating the text of which metadata records consist

of, by tagging specific parts of this text according to a pre-specified set of words that

denote concepts of interest in the domain the metadata records and the corresponding

context they refer to. This task is usually referred to as information extraction (IE) or

knowledge extraction in the literature [Ben-Dov and Feldman, 2010, McCallum 2005,

Sarawagi 2008]. In other words, the information extraction is the discipline concerned with

the extraction of natural language expressions from free text, where these expressions

instantiate concepts of interest in a given domain. If there are n different concepts of

interest, information extraction is a bit like highlighting the text via n highlight markers of n

different colours. For instance, given a corpus of job announcements, one might want to

extract from each announcement the natural language expressions that describe the nature

of the job, the promised annual salary, the job location, etc.

Another very popular instance of IE is searching free text for named entities, i.e., names (or

mentions) of persons, locations, geopolitical organizations, and so on [Nadeau and Sekine,

2007]. Put yet another way, IE may be seen as the activity of populating a structured

information repository (such as a relational database, where “job”, “annual salary”, “job

location” are attributes) from an unstructured information source such as a corpus of free

text. As such, IE is important for enriching digital libraries by making implicit semantics

explicit, and is a prerequisite for concept normalization (i.e., linking the mention of a

concept to an entry of a controlled vocabulary so that different linguistic manifestations of

the same concept link to the same controlled vocabulary entry).

There are two main approaches to designing an IE system. The former is the rule- based

approach, which consists of manually writing a set of rules which relate natural language

patterns with the concepts to be extracted from the text. This approach, while potentially

effective, is too costly, since it requires a lot of human effort for writing the rules, which

must be jointly written by a domain expert and a natural language engineer. In T2.1.2 we

followed the alternative approach, which is based on supervised machine learning.

According to this approach, a general-purpose learning software learns to relate natural

language patterns with the concepts to be instantiated, from a set of manually annotated

free texts, i.e., texts in which the instances of the concepts of interest have been marked by

a domain expert. The most important advantage of this approach is that the human effort

required for annotating the texts needed for training the system is less than the one

needed for manually writing the extraction rules. After all, this is just a manifestation of the

fact, well-known in the cognitive sciences, that defining a concept intensionally (i.e.,

specifying a set of rules for recognizing the instances of this concept – say, a set of rules for

recognizing red objects) is cognitively much harder for a human that defining the same

concept ostensively (i.e., pointing to a set of instances of the concept – say, pointing to a set

of red objects). A consequence of the machine learning approach is that a system for

ASSETS Ingestion Services – 2nd release Page 5 D2.1.3 V1.3

information extraction may be easily updated to reflect new needs. For example the

addition of a new concept into the group of concepts to be identified, or the replacement of

one concept set with a completely different one. While the rule-based approach would

require in these cases the manual update of the extraction rules via the joint work of a

knowledge engineer and a domain expert, the machine learning approach just requires the

provision of new training examples annotated according to the new concepts of interest.

In T2.1.2 this is extremely advantageous since the ASSETS consortium (and also the group of

Europeana content providers) comprises a variety of content providers coming from

libraries, museums, audio-visual archives, etc. They are owning different types of content

(and thus likely requiring the annotation of text according to different concepts of interest)

and describe it via metadata records formulated in different languages. In the rule-based

approach this diversity would entail the need to tackle each combination of <content

provider + type of content + language> individually, by manually writing rules for each such

combination, while in the machine learning approach each such combination may be tackled

by simply providing appropriate training examples.

In the following sections we will first give a formal definition of information extraction and a

brief description of “conditional random fields”, the supervised learning algorithm that we

have adopted for T2.1.2. Conditional random fields have widely been studied, and are

widely used in information extraction applications, ranging from named entity recognition

[Zeng et al., 2009], to the analysis of medical reports [Esuli et al., 2011], to medical record

anonymisation [Szarvas et al, 2007], and even word hyphenation [Trogkanis and Elkan,

2010]. We will then give a detailed description of the evaluation protocol that we have

followed in order to ascertain how accurately the system performs on the metadata records

of the ASSETS and Europeana content providers.

2.1.1 A formal definition of information extraction

Let a text U = {t1 < s1 < ... < sn-1 < tn} consist of a sequence of tokens (i.e., word occurrences)

t1, ..., tn and separators (i.e., sequences of blanks and punctuation symbols) s1, ..., sn-1, where

”<” means “precedes in the text”. We use the term textual unit (or simply t-unit), with

variables u1, u2, ..., to denote either a token or a separator. Let C={c1, ..., cm} be a predefined

set of tags (aka labels, or classes), or tagset. Let A={11, ..., 1k, ..., m1, ..., mk} be an

annotation for U, where a segment ij for U is a pair (stij,etij) composed of a start token stij

U and an end token etij U such that stij ≤ etij (“≤” obviously means “either precedes in the

text or coincides with”). Here, the intended semantics is that, given segment ij=(stij ,etij)

A, all t-units between stij and etij, extremes included, are tagged with tag ci.

Given a universe of texts U and a universe of segments A, we define information

extraction (IE) as the task of estimating an unknown target function Φ : U X C→ A, that

defines how a text U U ought to be annotated (according to a tagset C) by an annotation

A A. The result Φ(Φ): U X C→ A of this estimation is called a tagger. Consistently with

most mathematical literature we use the caret symbol Φ() to indicate estimation. Note that

the notion of IE we have defined allows a given t-unit to be tagged by more than one tag,

and is thus dubbed multi-tag IE. The multi-tag nature of our definition essentially means

that, given tagset C={c1, ..., cm}, we can split our original problem into m independent

subproblems of estimating a target function Φi : U → Ai by means of a tagger Φ(Φi) : U →

Ai, for any i {1, ..., m}. Likewise, the annotations we will be concerned with from now on

ASSETS Ingestion Services – 2nd release Page 6 D2.1.3 V1.3

will actually be c-annotations, i.e., sets of ci-segments of the form Ai ={i1, ..., ii}. Hereafter

we will often drop the prefix ci- when the context makes it implicit.

2.1.2 Conditional random fields

As a learning algorithm we have used conditional random fields[Lafferty et al, 2001, Sutton

and McCallum, 2007]. Conditional random fields are graphical models that model a

conditional distribution p(y|x), in which the variable y=〈y1,..., ytΦ represents the labels to be

predicted, and the variable x=〈x1,..., xtΦ represents the observed knowledge. In our case y

are the tags to be assigned to the tokens and separators in the text, and x is the information

about these tokens and separators that we will input to the system.

Conditional random fields are often used in classification tasks in which the entities to be

classified have highly dependent features (sequence labelling, IE, etc.). Conditional random

fields differ from other graphical models, such as Hidden Markov Models, that use a joint

probability distribution p(y,x) and therefore require to know the prior probability

distribution p(x). In conditional random fields the input variables x do not need to be

represented, thus avoiding the non-trivial modelling of the prior probability distribution p(x)

and allowing the use of rich and dependent features of the input.

CRF++ is the implementation of linear-chain conditional random fields, that define the

conditional probability of y given x as:

() ()

−∑ ∑ tttk

T

=t

K

=k
k x;y,yfθ

xZ
=θxyP 1

1 1

exp
1

:

Where: Z(x) is a normalization factor and θ k is one of the K model parameter weights

corresponding to a feature function k(yt-1,yt ; xt).

Each feature function k describes the sequence x at position t with label yt observed with a

transition from label yt-1 to yt.

CRF++ allows defining feature functions k by using information about the token to be

labelled and about the tokens around the token to be labelled. This is possible by defining

the size of the window of tokens to be considered around the one to be labelled. The

window can be composed by information belonging to tokens that precede the token to be

labelled or belonging to tokens that follow the token to be labelled. Having a wide window

is important in tasks that require identifying long annotated sequence of tokens. For more

details about conditional random fields see [Sutton and McCallum, 2007].

A conditional random field learner needs each t-unit either in a training document or in a

test document to be represented in vectorial form. In this work we have used a set of

features consisting of the original token as it appears in the text, its part of speech, and the

relative lemma, plus information about capitalization, prefixes, suffixes and stemming. To

give the learner more robustness over typographical and orthographical errors, we use as

features:

• the token lemma,

• the token prefixes (the first character of the token, the first two, the first three, the

first four)

• the token suffixes (the last character of the token, the last two, the last three, the

ASSETS Ingestion Services – 2nd release Page 7 D2.1.3 V1.3

last four),

• the token stem,

• and token capitalization information.

With token capitalization we identify 4 types of capitalization: “all capital”, indicating that all

the letters in the word are uppercased, “first letter capital”, indicating that just the first

letter of the word is uppercased and the rest of the letters are all lowercased, “all lower”,

indicating that none of the letters in the word are uppercased, and “mixed case”, indicating

that there are some uppercased letters and some lowercased letters. We also include as a

feature the part of speech of the token.

As the evaluation measure we use the recently proposed token & separator F1 model [Esuli

and Sebastiani, 2010]. According to this model, a tagger is evaluated according to the well-

known F1 measure on an event space consisting of all t-units in the text. In other words,

each t-unit uk (rather than each segment, as in the traditional “segmentation F-score”

model) counts as a true positive, true negative, false positive, or false negative for a given

tag ci, depending on whether uk belongs to ci or not in the predicted annotation and in the

true annotation. As argued by Esuli and Sebastiani [2010], this model has the advantage that

it credits a system for partial success and it penalizes both overtagging and undertagging.

As the well-known F1 metric combines the contributions of precision (π) and recall (ρ) and is

defined as F1=
2 πρ
π+ρ

=
2TP
2TP+FP+FN , where TP, FP, and FN stand for the numbers of

true positives, false positives, and false negatives, respectively. Note that F1 is undefined

when TP=FP=FN =0; in this case we take F1 to equal 1, since the tagger has correctly tagged

all t-units as negative.

We compute F1 across the entire test set, i.e., we generate a single contingency table by

putting together all t-units in the test set, irrespective of the text they belong to. We then

compute both micro-averaged F1 (denoted by F1
μ
) and macro-averaged F1 (F1

M
). F1

μ
 is

obtained by (i) computing the tag-specific values TPi, FPi and FNi, (ii) obtaining TP as the sum

of the TPi’s (same for FP and FN), and then (iii) applying the F1=
2TP
2TP+FP+FN formula.

F1
M

 is obtained by first computing the tag-specific F1 values and then averaging them across

the cj ’s.

An advantage of using F1 as the evaluation measure is that it is symmetric, i.e., its values do

not change if one switches the roles of the human annotator and the automatic tagger. This

means that F1 can also be used as a measure of agreement between any two

annotators/taggers, regardless of whether they are human or machine, since it does not

require one to specify who among the two is the “gold standard” against which the other

needs to be checked. For this reason, in the following section we will use F1 both (a) to

measure the agreement between our system and the human annotators, and (b) to

measure the agreement between the two human annotators. This will allow us to judge in a

direct way how far our system is from human performance.

2.1.3 References

Ben-Dov, M., Feldman, R.: Text Mining and Information Extraction. In Oded Maimon, Lior Rokach

(Eds.): Data Mining and Knowledge Discovery Handbook, 2nd ed. Springer, 2010, pp. 809-835

ASSETS Ingestion Services – 2nd release Page 8 D2.1.3 V1.3

Esuli, A., Marcheggiani, D., Sebastiani, F.,: Information Extraction from Radiology Reports. Presented

at the 7th Italian Conference on Digital Libraries, Pisa, Italy, 2011

Esuli, A., Sebastiani, F.: Evaluating information extraction. In: Proceedings of the Conference on

Multilingual and Multimodal Information Access Evaluation (CLEF’10), Padova, IT (2010) 100–

111

Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting

and labeling sequence data. In: Proceedings of the 18th International Conference on Machine

Learning (ICML’01), Williamstown, US (2001) 282–289

Li, L., Zhou, R., Huang, D.: Two-phase biomedical named entity recognition using CRFs. Computational

Biology and Chemistry 33(4):334-338 (2009)

McCallum, A.: Information extraction: Distilling structured data from unstructured text. Queue 3(9)

(2005) 48–57

Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Linguisticae

Investigationes 30(1) (2007) 3—26

Sarawagi, S.: Information extraction. Foundations and Trends in Databases 1(3) (2008) 261--377

Sutton, C., McCallum, A.: An introduction to conditional random fields for relational learning. In

Getoor, L., Taskar, B., eds.: Introduction to Statistical Relational Learning. The MIT Press,

Cambridge, US (2007) 93–127

Szarvas, G., Farkas, R., and Busa-Fekete, R.: State-of-the-art anonymisation of medical data with an

iterative machine learning model/framework. Journal of the American Medical Informatics

Association, 14(5):574–580, 2007.

Trogkanis, N., Elkan, C.: Conditional Random Fields for Word Hyphenation. Proceedings of the 48th

Annual Meeting of the Association for Computational Linguistics, July 11-16, 2010, Uppsala,

Sweden, 2010, pp. 366-374.

Zeng, G., Zhang, C., Xiao, Bo., Lin, Z.: CRFs-Based Chinese Named Entity Recognition with Improved

Tag Set. Proceedings of the 2009 WRI World Congress on Computer Science and Information

Engineering, 2009, Los Angeles, US, 2009:519-522

2.2 Automatic Classification of Metadata Records

As part of their routine information management protocols, many organizations and

content providers classify their content (or the metadata that describe these contents)

according to a set of categories (or “classification scheme”) that effectively describe the

domain this content is about. There is often the case that, unless the domain is trivial in

nature, this classification scheme has a hierarchical structure, since a non-hierarchical, flat

structure would be too clumsy to accommodate the high number of categories that describe

the domain. We will indeed assume that content providers do structure their content

according to a hierarchically shaped classification scheme. This assumption is non-

restrictive, since a flat classification scheme may also be seen as a hierarchical classification

scheme consisting of only two levels, the root (level 0) and all the categories (level 1)

appended to the root as children.

The field of supervised learning that tackles the classification of textual items (as metadata

records are) under hierarchically structured classification schemes is called hierarchical text

categorization (HTC). Notwithstanding the fact that most large-sized classification schemes

for text (e.g. the ACM Classification Scheme, the MESH thesaurus, the NASA thesaurus)

ASSETS Ingestion Services – 2nd release Page 9 D2.1.3 V1.3

indeed have a hierarchical structure, the attention of text classification (TC) researchers has

mostly focused on algorithms for “flat” classification. These algorithms, once applied to a

hierarchical classification problem, are not capable of taking advantage of the information

inherent in the class hierarchy, and may thus be suboptimal, in terms of efficiency and/or

effectiveness. On the contrary, many researchers have argued that by leveraging on the

hierarchical structure of the classification scheme, heuristics of various kinds can be brought

to bear that make the classifier more efficient and/or more effective. This is the reason why,

for the purposes of T2.1.3, we have focused our attention on algorithms explicitly devised

for HTC.

An important intuition that underlies HTC algorithms is that by viewing classification as the

identification of the paths that start from the root, funnel the document down to the

subtrees where it belongs (in “Pachinko machine” style), entire other subtrees can be

pruned from consideration. That is, when the classifier corresponding to an internal node

outputs a negative response, the classifiers corresponding to its descendant nodes do not

need to be invoked any more, thus reducing the computational cost of classifier invocation

exponentially [Chakrabarti et al. 1998; Koller and Sahami 1997].

A second important intuition is that, by training a binary classifier for an internal node

category on a well-selected subset of training examples of local interest only, the resulting

classifier may be made more attuned to recognizing the subtle distinctions between

documents belonging to that node and those belonging to its sibling nodes. While this

technique promises to bring about more effective classifiers, it is also going to improve

efficiency, since a smaller set of examples is used in training, thereby making classifier

learning speedier. Many of these intuitions have been used in close association with several

learning algorithms; the most popular choices in this respect have been naïve Bayesian

methods, neural networks, support vector machines and example-based classifiers.

In T2.1.3 we have used an HTC algorithm based on boosting technology, called

TreeBoost.MH [Esuli et al, 2008]. The reasons for this choice include the fact that

TreeBoost.MH has proved to be highly efficient highly accurate and above all competitive

algorithms we tested in several applications. We have previously applied this technology for

the classification of newswire reports [Esuli et al, 2008], medical discharge reports [Esuli et

al, 2008] and radiology reports [Baccianella et al, 2011]. TreeBoost.MH is a multi-label (ML)

HTC algorithm that consists of a hierarchical variant of AdaBoost.MH [Schapire and Singer,

2000], the most important member of the boosting algorithms family. Here, multi-label (ML)

means that a document can belong to zero, one, or several categories at the same time.

TreeBoost.MH embodies several intuitions that had arisen before HTC (e.g. the intuitions

that both feature selection and the selection of negative training examples should be

performed “locally” (i.e. by paying attention to the topology of the classification scheme).

TreeBoost.MH also incorporates the intuition that the weight distribution that boosting

algorithms update at every boosting round should likewise be updated “locally”. All these

intuitions are embodied within TreeBoost.MH in an elegant and simple way, i.e. by defining

TreeBoost.MH as a recursive algorithm that uses AdaBoost.MH as its base step, and that

recurs over the tree structure.

In the next two sections we give a concise description of TreeBoost.MH.

2.2.1 TreeBoost.MH: A hierarchical version of AdaBoost.MH for multi-label TC

When discussing an HTC application it is always important to specify what the semantics of

ASSETS Ingestion Services – 2nd release Page 10 D2.1.3 V1.3

the hierarchy is (i.e., to specify the semantic constraints that a supposedly perfect classifier

would enforce). Knowing which constraints are in place has important consequences on

which algorithms we might want to apply to this task, and more importantly, on how we

should evaluate these algorithms. For instance, one should specify whether a document can

in principle belong to zero, one, or several categories (which is indeed our assumption

within T2.1.3), or whether it always belongs to one and only one category. No less

importantly, one should specify whether it is the case that:

1. a document d that is a positive example of a category is also a positive example of all

its ancestor categories. We assume this to be the case.

2. a document d can in principle be a positive example of an internal node category and

at the same time not be a positive example of any of its descendant categories. We

assume this to be the case.

Assumption 2 is indeed useful for tackling datasets in which documents with these

characteristics do occur, while at the same time not preventing us to deal with datasets with

the opposite characteristics. A consequence of these two assumptions is that the set of the

positive training examples of a non-leaf category is a (possibly proper) superset of the union

of the sets of positive training examples of all its descendant categories.

TreeBoost.MH embodies several intuitions that had arisen before within HTC.

The first, fairly obvious intuition (which lies at the basis of practically all HTC algorithms

proposed in the literature) is that, in a hierarchical context, the classification of a document

is to be seen as a descent through the hierarchy, from the root to the (internal or leaf)

categories where the document is deemed to belong. In ML classification this means that

each non-root category has an associated binary classifier which acts as a “filter” that

prevents unsuitable documents to percolate to the descendants of the category. All test

documents that a classifier deems to belong to a category are passed as input to all the

binary classifiers corresponding to its children categories, while the documents that the

classifier deems not to belong to the category are “blocked” and analysed no further. Note

that it may well be the case that a document is deemed to belong to a category by its

corresponding classifier and is then rejected by all the binary classifiers corresponding to its

children categories; this is indeed consistent with assumption (2) above. In the end, each

document may thus reach zero, one, or several (leaf or internal node) categories, and is thus

classified as belonging to them.

The second intuition is that the training of a classifier should be performed “locally”, i.e. by

paying attention to the topology of the classification scheme. To see this, note that, during

classification, if the classifier for a category has performed reasonably well, the classifier for

the children categories will only (or mostly) be presented with documents that belong to the

subtree rooted in that category. As a result, the training of a classifier for a given category

should be performed by using, as negative training examples, the positive training examples

of its sibling categories, with the obvious exception of the documents that are also positive

training examples of the category itself. In particular, training documents that only belong to

categories other than those mentioned above need not be used. The rationale of this choice

is that the negative training examples thus selected are “quasi-positive” examples of the

category [Fagni and Sebastiani, 2010], i.e. are the negative examples that are closest to the

boundary between the positive and the negative region of the category (a notion akin to

that of “support vectors” in SVMs), and are thus the most informative negative examples

that can be used in training. This is beneficial also from the standpoint of (both training and

ASSETS Ingestion Services – 2nd release Page 11 D2.1.3 V1.3

classification time) efficiency, since fewer training examples and fewer features are

involved.

The third intuition is similar, i.e. that feature selection should also be performed “locally”,

by paying attention to the topology of the classification scheme. As above, if the classifier

for the category has performed reasonably well, the classifiers for its children categories will

only (or mostly) be presented with documents that belong to the subtree rooted in the

category itself. As a consequence, for the classifiers corresponding to the children

categories, it is cost-effective to employ features that are useful in discriminating (only)

among themselves. The features that discriminate among categories lying outside the

subtree rooted in the category are too general and the features that discriminate among the

subcategories of the children categories are too specific. This intuition, albeit in the slightly

different context of single-label classification was first presented in [Koller and Sahami,

1997].

TreeBoost.MH also embodies the novel intuition that the weight distribution that boosting

algorithms update at every boosting round should likewise be updated “locally”. In fact, the

two previously discussed intuitions indicate that hierarchical ML classification is best

understood as consisting of several independent (flat) ML classification problems, one for

each internal node of the hierarchy. In a boosting context, this means that several

independent distributions, each one “local” to an internal node, should be generated and

updated by the process. In this way, the “difficulty” of a category will only matter relative to

the difficulty of its sibling categories. This intuition is of key importance in allowing

TreeBoost.MH to obtain exponential savings in the cost of training over AdaBoost.MH.

TreeBoost.MH incorporates these four intuitions by factoring the hierarchical ML

classification problem into several “flat” ML classification problems, one for every internal

node in the tree. TreeBoost.MH learns in a recursive fashion, generating a binary classifier

for each non-root category, by means of which hierarchical classification can be performed

in “Pachinko machine” style.

Learning in TreeBoost.MH proceeds by first identifying whether a leaf category has been

reached, in which case nothing is done, since the classifiers are generated only at internal

nodes. If an internal node has been reached, a ML feature selection process may (optionally)

be run to generate a reduced feature set on which the ML classifier for the node will

operate. This may be dubbed a “glocal” feature selection policy, since it takes an

intermediate stand between the well-known “global” policy (in which the same set of

features is selected for all the categories) and the “local” policy (in which a different set of

features is chosen for each different category). The glocal policy selects a different set of

features for each (maximal) set of sibling categories. We use information gain as the feature

selection function and Forman’s [2004] round robin as a feature score globalization method.

After the reduced feature set has been identified, TreeBoost.MH calls upon AdaBoost.MH to

solve a ML (flat) classification problem for the set of sibling categories. Again, in order to

implement the “quasi-positive” policy discussed above, the negative training examples of a

category are taken to be the set of the positive training examples of its sibling categories

minus the positive training examples of the category itself. Note that this implements the

view of several independent, “local” distributions being generated and updated during the

boosting process.

Finally, after the ML classifier for a maximal set of sibling categories has been generated, for

each such category a recursive call to TreeBoost.MH is issued that processes the subtree

ASSETS Ingestion Services – 2nd release Page 12 D2.1.3 V1.3

rooted in the category in the same way. The final result is a hierarchical ML classifier in the

form of a tree of binary classifiers, one for each non-root node, each consisting of a

committee of decision stumps.

2.2.2 Related work

HTC was first tackled in Wiener et al. [1995], in the context of a TC system based on neural

networks and latent semantic indexing. The intuition that it could be useful to perform

feature selection locally by exploiting the topology of the tree is originally due to Koller and

Sahami [1997]. However, this work was dealing with single-label text categorization, which

means that feature selection was performed ‘‘collectively’’(i.e., relative to the set of

children of each internal node). Given that in T2.3.1 we are in an ML classification context,

we instead do it ‘‘individually’’ (i.e. relative to each child of any internal node). The intuition

that the negative training examples for training the classifier for a given category could be

limited to the positive training examples of categories topologically close to it is due to Ng et

al. [1997] and Wiener et al. [1995]. The fact that in an ML classification context the

classifiers at internal nodes act as ‘‘routers’’ informs much of the HTC literature and is

explicitly discussed in Ruiz and Srinivasan [2002], which proposes a HTC system based on

neural networks.

Other works in hierarchical text categorization have focused on other specific aspects of the

learning task. For instance, the ‘‘shrinkage’’ method presented in McCallum et al. [1998] is

aimed at improving parameter estimation for data-sparse leaf categories in a single-label

HTC system based on a naive Bayesian method. The underlying intuitions are specific to

naive Bayesian methods and do not easily carry over to other contexts. Incidentally, the

naive Bayesian approach seems to have been the most popular among HTC researchers,

since several other HTC models are hierarchical variations of naive Bayesian learning

algorithms [Chakrabarti et al. 1998; Gaussier et al. 2002; Toutanova et al. 2001; Vinokourov

and Girolami 2002]. SVMs have also recently gained popularity in this respect [Cai and

Hofmann 2004; Dumais and Chen 2000; Liu et al. 2005; Yang et al. 2003].

2.2.3 References

Baccianella, S., Esuli, A., & Sebastiani, F. (2011). Single-Label Classification of Radiology Reports under

the ACR Classification Scheme. Presented at the 7th Italian Research Conference on Digital

Libraries, Pisa.

Cai, L., & Hofmann, T. (2004). Hierarchical document categorization with support vector machines. In

Proceedings of the 13th ACM International Conference on Information and Knowledge

Management (CIKM’04), pp. 78–87.

Chakrabarti, S., Dom, B. E., Agrawal, R., & Raghavan, P. (1998). Scalable feature selection,

classification and signature generation for organizing large text databases into hierarchical

topic taxonomies. Journal of Very Large Data Bases, 7(3), 163–178.

Dumais, S. T., & Chen, H. (2000). Hierarchical classification of web content. In Proceedings of the 23rd

ACM International Conference on Research and Development in Information Retrieval

(SIGIR’00) (pp. 256–263). Athens, GR.

Esuli, A., Fagni, T., & Sebastiani, F. (2008). Boosting Multi-label Hierarchical Text Categorization.

Information Retrieval, 11(4):287-313.

Fagni, T. & Sebastiani, F. (2010). Selecting Negative Examples for Hierarchical Text Classification: An

Experimental Comparison. Journal of the American Society for Information Science and

ASSETS Ingestion Services – 2nd release Page 13 D2.1.3 V1.3

Technologies, 61(11):2256-2265.

Forman, G. (2004). A pitfall and solution in multi-class feature selection for text classification. In Pro-

ceedings of the 21st International Conference on Machine Learning (ICML’04). Banff, CA.

Gaussier, E., Goutte, C., Popat, K., & Chen, F. (2002). A hierarchical model for clustering and

categorising documents. In Proceedings of the 24th European Colloquium on Information

Retrieval Research (ECIR’02) (pp. 229–247). Glasgow, UK.

Koller, D., & Sahami, M. (1997). Hierarchically classifying documents using very few words. In Pro-

ceedings of the 14th International Conference on Machine Learning (ICML’97) (pp. 170–178).

Nashville, US.

Liu, T. Y., Yang, Y., Wan, H., Zeng, H. J., Chen, Z., & Ma, W. Y. (2005). Support vector machines

classification with a very large-scale taxonomy. SIGKDD Explorations, 7(1), 36–43.

McCallum, A. K., Rosenfeld, R., Mitchell, T. M., Ng, A. Y. (1998). Improving text classification by

shrinkage in a hierarchy of classes. In Proceedings of the 15th International Conference on

Machine Learning (ICML’98) (pp. 359–367). Madison, US.

Ng, H. T., Goh, W. B., Low, K. L. (1997). Feature selection, perceptron learning, and a usability case

study for text categorization. In Proceedings of the 20th ACM International Conference on

Research and Development in Information Retrieval (SIGIR’97) (pp. 67–73). Philadelphia, US.

Ruiz, M., & Srinivasan, P. (2002). Hierarchical text classification using neural networks. Information

Retrieval, 5(1), 87–118.

Schapire, R. E., & Singer, Y. (2000). BOOSTEXTER: A boosting-based system for text categorization.

Machine Learning, 39(2/3), 135–168.

Toutanova, K., Chen, F., Popat, K., & Hofmann, T. (2001). Text classification in a hierarchical mixture

model for small training sets. In Proceedings of the 10th ACM International Conference on

Information and Knowledge Management (CIKM’01) (pp. 105–113). Atlanta, US.

Vinokourov, A., & Girolami, M. (2002). A probabilistic framework for the hierarchic organisation and

classification of document collections. Journal of Intelligent Information Systems, 18(2/3),

153–172.

Wiener, E. D., Pedersen, J. O., & Weigend, A. S. (1995). A neural network approach to topic spotting.

In Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval

(SDAIR’95) (pp. 317–332). Las Vegas, US.

Yang, Y., Zhang, J., & Kisiel, B. (2003). A scalability analysis of classifiers in text categorization. In

Proceedings of the 26th ACM International Conference on Research and Development in

Information Retrieval (SIGIR’03) (pp. 96–103). Toronto, CA.

ASSETS Ingestion Services – 2nd release Page 14 D2.1.3 V1.3

3. Software Requirements Overview

3.1 Knowledge extraction

Europeana metadata contains both structured and unstructured information. Structured

information is provided by those metadata fields that identify well-specified type of

information (e.g., "date", "creator", "language", etc.). Unstructured information is provided

by those metadata fields that act as containers of generic information (e.g., "description").

The aim of the knowledge extraction service (Task 2.1.2) is to provide the ASSETS platform

with automatic information extraction functionalities that enable to extract relevant

structured information (e.g. names of persons, locations, organizations, from unstructured

metadata fields contained in Europeana records).

3.1.1 Problem statement

The presence of relevant information stored only in unstructured fields affects the metadata

of almost any Europeana content provider. In these cases, potentially relevant information

is not given a proper representation in the Europeana records, but it is mentioned in

generic, unstructured, textual fields.

The recognition and extraction into dedicated data structures of relevant information

contained in unstructured text fields would improve the Europeana records by supporting

the completion and/or correction of metadata fields in the original records. Additionally it

supports enriching such records with additional fields and enabling the Europeana users to

access and search such additional structured information.

3.1.2 Product position statement

The Knowledge extraction service enables Europeana and Content Providers who need to

enrich their content by extracting knowledge from unstructured text to perform automatic

extraction, once provided with an example set of manually annotated documents.

Unlike completely manual processing or rule-based annotation systems, the knowledge

extraction service allows to process large amounts of data by providing a set of examples

without requiring the provider to learn complex rule definitions for rule-based annotations.

In our approach, the provider is asked just to annotate the relevant pieces of text for the

various types of information to be extracted.

3.1.3 Stakeholder Descriptions

Name: Content Providers and Europeana

Description: Any content provider that provides data to Europeana, whose data contains

relevant fields for the extraction process (e.g. textual descriptions) can take benefit of these

services. The Europeana ingestion team may use the services for the data already acquired

by Europeana.

Responsibilities: These stakeholders are responsible to:

(i) define the annotation schema that identifies the relevant types of information

ASSETS Ingestion Services – 2nd release Page 15 D2.1.3 V1.3

to be extracted;

(ii) select and annotate a set of records, following the annotation schema.

Name: ISTI-CNR

Description: The research group at ISTI-CNR that is responsible for the knowledge extraction

task.

Responsibilities: This stakeholder is responsible to:

(i) support content providers and Europeana in the process of defining the

annotation schema;

(ii) provide the proper linguistic analysis, statistical analysis, and machine learning

methods best suited for the extraction task as defined by the annotation

schema;

(iii) provide the functionalities to include the generated automatic extractors into

the ASSETS ingestion workflow.

3.1.4 User Environment

This service is intended to provide its functionalities to ingestion workflow service of the

ASSETS platform without any direct interaction with the user.

3.1.5 Feature or Functionality Overview

The development of an information extraction service for a specific type of information is a

process that involves three steps:

1. Definition of an annotation schema for a specific information extraction process.

The data provider identifies a relevant type of information to be extracted from its

records.

2. Definition of a training set for a specific information extraction process. The data

provider produces a training set of manually annotated records following the

annotation schema. There is no upper limit to the number of annotated records that

could be generated by the content providers. This training set of annotated records

is given in input to the automatic knowledge extraction system in order to produce

and extraction model.

3. Automatically enrich metadata records by extracting information from unstructured

text. The content provider sends to the service a set of non-annotated records and

specifies the trained extraction model to be applied. The service returns a set of

new instances of the records in which the information that is relevant to the

extraction model has been annotated and copied into dedicated metadata fields.

3.1.6 System Qualities

Usability: The service will provide an API and the relative documentation for inclusion into

the ASSETS platform ingestion workflow.

ASSETS Ingestion Services – 2nd release Page 16 D2.1.3 V1.3

Reliability: The service does not provide at any time critical functionalities. The service

provides methods for process progress control for batch processing requests.

Performance: Information extraction is a task that is part of the ingestion workflow. Given

that this process is executed in back-office as part of the ASSETS platform and also that the

knowledge extraction process does not require active user interaction, the performance of

the system are not a critical aspect. However, the system is based on state-of-the art

algorithms and data structures in order to provide the users with the maximum efficiency.

Annotation requests for a single record to be typically complete in 5-10 seconds. Batch

processing requests exploits bulk processing of records in order to speed up the annotation

process that is expected to be about on order of magnitude faster than online annotation.

User Interfaces: The service does not require a user interface.

Software Interfaces: The service is accessible within the ASSETS ingestion workflow service

by providing a RESTful HTTP interface.

3.1.7 System Constraints

The service is developed in Java.

3.1.8 System Compliance

Licensing Requirements: The service adopts an open source, EUPL-compatible license.

Legal, Copyright, and Other Notices: Third party components are a Java virtual machine and

several Java libraries (e.g. like Log4J). Any other additional library referred by the service is

licensed with an open source, EUPL-compatible license.

3.1.9 System Documentation

Javadoc documentation for developers is provided for the service API.

3.2 Metadata Classification Service

The aim of the metadata classification service (Task 2.1.3) is to provide the ASSETS platform

with the functionality of automated classification of metadata records under a taxonomy of

categories of interest.

The classification process consists of linking a record to zero, one, or several categories from

a (taxonomically organized) set of predefined categories (aka "classes", or "concepts", or

"codes"). The set of predefined categories is called the classification scheme. Classification is

thus akin to "populating" a taxonomy with instances of the concepts in the taxonomy.

Europeana records are provided by many different content providers, which may:

(i) not use any classification schema for their data,

(ii) use a very specific classification scheme custom-tailored to specific local purposes

of the content provider,

(iii) use a standard well-known classification schema for their data, either general-

purpose (e.g., Library of the Congress Subject Headings, LCSH) or discipline-specific

(e.g., Medical Subject Headings).

ASSETS Ingestion Services – 2nd release Page 17 D2.1.3 V1.3

Among these three cases the last one is certainly the preferred one for Europeana.

The metadata classification service enables Europeana and content providers to

automatically classify unlabelled metadata records, following a set of general-purpose

and/or discipline-specific classification schema.

The ultimate goal of the task is making the searching and browsing experience from the

user’s view more satisfactory; e.g.:

� user can navigate from record to concept and to other records belonging to same

concept or sibling concepts;

� user can restrict search to records belonging to a specific concept;

� user can ask to group the search results according to the concepts they belong to.

3.2.1 Problem Statement

Europeana, Content Providers, and Europeana users, could benefit from having the

metadata records properly linked to a set of classes in a general-purpose or discipline-

specific taxonomy. Most of Europeana records are currently not structured into general-

purpose and/or discipline-specific taxonomies, losing the possibility to search, browse and

navigate through records by considering the concepts/classes they belong to. Performing

the classification of Europeana records into general-purpose and/or discipline-specific

taxonomies would enable new access methods to records based on the concept/classes

they belong to.

3.2.2 Product Position Statement

The metadata classification service enables to perform automatic metadata classification of

record once provided with an example set of manually classified records, supporting

Europeana and Content Providers in the process of enriching their content by classifying

their records according to a classification schema.

Instead of adopting a completely manual classification of documents, which requires a large

human effort, or a rule-based classification method, which requires the provider to learn

complex rule definitions, the metadata classification service allows to process large amounts

of data by providing a relatively small set of examples with regard to the size of metadata

collections.

3.2.3 Stakeholder Descriptions

Name: Content Providers and Europeana

Description: Any content provider that provides data to Europeana and the Europeana

ingestion team would be interested to use this service for metadata enrichment.

Responsibilities: These stakeholders will be responsible to:

(i) define the classification scheme to be used for record classification;

(ii) select and manually classify a set of records, following the classification scheme.

Name: ISTI-CNR

Description: The research group at ISTI-CNR that is responsible for the metadata

classification task.

ASSETS Ingestion Services – 2nd release Page 18 D2.1.3 V1.3

Responsibilities: This stakeholder will be responsible to:

(i) support content providers and Europeana in the process of defining the

classification scheme;

(ii) design and develop the proper linguistic analysis, statistical analysis, and

machine learning methods best suited for the classification task, as defined by

the classification schema;

(iii) provide the functionalities to include the generated metadata classifiers into the

ASSETS ingestion workflow.

3.2.4 User Environment

This service is intended to provide functionalities to other services of ASSETS/Europeana,

without any direct interaction with the user.

3.2.5 Feature or Functionality Overview

The development of a classification service for a given classification scheme is a process that

involves three steps:

1. Definition of a classification scheme for a specific metadata classification process.

The content provider identifies a classification scheme for the classification of its

records.

2. Definition of a training set for a specific metadata classification process. The content

provider produces a training set of at least one thousand manually classified records

following the classification scheme.

3. Classify a record according to a given taxonomy. The data provider sends to the

service a set of unclassified records, and specifies the metadata classification model

to be adopted. The service returns a set of new instances of the records in which the

proper codes are assigned to records.

3.2.6 System Qualities

Usability: The service provides an API, and the relative documentation, for inclusion into the

ASSETS platform ingestion workflow.

Reliability: The service does not provide at any time critical functionalities. The service

provides methods for process progress control for batch processing requests.

Performance: Performance is not a critical issue for the classification service, since it is

performed in the backoffice part of Europeana, and it does not require user interaction.

However, the system adopts state-of-the-art algorithms and data structures in order to

provide an efficient service. Online classification requests for a single record will typically

complete in 2-5 seconds, while bulk requests will be processed about one order of

magnitude faster, exploiting bulk processing of records.

User Interfaces: The service does not require a user interface.

Software Interfaces: The service is accessible within the ASSETS ingestion workflow service

by means of a RESTful HTTP interface.

ASSETS Ingestion Services – 2nd release Page 19 D2.1.3 V1.3

3.2.7 System Constraints

The service is developed in Java.

3.2.8 System Compliance

Licensing Requirements: The service adopts an open source, EUPL-compatible license.

Legal, Copyright, and Other Notices: Third party components are a Java virtual machine and

several Java libraries (e.g. like Log4J). Any other additional library referred by the service is

licensed with on open source, EUPL-compatible license.

3.2.9 System Documentation

Javadoc documentation for developers is provided for the service API.

ASSETS Ingestion Services – 2nd release Page 20 D2.1.3 V1.3

3.3 Ingestion Workflow service

3.3.1 Problem statement

The Europeana web portal implements a search engine over the European cultural heritage.

In order to provide this functionality, an index with the description of the masterpieces of

objects available in Galleries, Libraries, Archives and Museum (GLAM) institutions was

created by aggregating information retrieved from the Content Providers (CPs, see Figure 1).

Figure 1 Aggregators in the Europeana organisation mode

The aggregation and ingestion are complex processes which were formalized in a flow

diagram within the requirements specification for the Danube release of Europeana. A

unified ingestion manager application is developed in order to offer support for scheduling,

executing and monitoring ingestion related activities. The professional services that have

been developed within the ASSETS project address the steps 7.Data Enrichment and 9. AIP-

Phase of the process sketched in Figure 2.

Further descriptions of each ingestion related task is available in Europeanalabs:

http://europeanalabs.eu/wiki/SpecificationsDanubeRequirementsContentInTools

ASSETS Ingestion Services – 2nd release Page 21 D2.1.3 V1.3

Figure 2 The Europeana Ingestion Process

3.3.2 Functionality overview

The metadata enrichment are the subject of this document, and they belong to the

workflow (step 7, Figure 2) while the indexing services and preservation services (Step 9,

Figure 2) will be ordinately described in the deliverables D2.2.5 (“Scalable Content Indexing

and Ranking”) and D2.3.2 (“Deployed Preservation Services”).

ASSETS project extends the GUI of the Europeana Ingestion “Control Panel” by

implementing screens that manage the following functionalities:

• Enrichment model learning: by using a training set appropriate for their metadata,

the content providers or Europeana are allowed to run the learning of enrichment

models for metadata classification or knowledge extraction,

• Enrichment by metadata classification: the classification of a collection can be

performed by selecting an appropriate classification model,

• Enrichment by knowledge extraction: the extraction of the structured knowledge

from the object descriptions can be performed similarly to the classification by

selecting an appropriate model and the collection to be enriched.

During the project specification phase, the most of the professional and the indexing

services were identified to belong to the post ingestion process. In our case this is

equivalent to the Access Information Package creation Phase (AIP-Phase) indicated in step 9

of the Europeana Ingestion Process.

In the DoW, these services were defined to be accessed through REST or command line

interfaces. During the integration in Europeana, these services will be bound within the

UIM-Control Panel as well.

ASSETS Ingestion Services – 2nd release Page 22 D2.1.3 V1.3

3.3.3 System Qualities

Usability: The service will provide a web based graphical UIM and a user manual to support

its usage.

Reliability: The enrichment of large metadata collections or the model training might take

long time, the invocation must not block the GUI of the ingestion workflow management.

Moreover, the GUI must display the status of the training/enrichment tasks.

Performance: The ingestion process is a back office process, and the response time of the

Ingestion Workflow interface must be in the range of regular web applications.

User Interfaces: The GUI must be web based and support the most common web browsers

(i.e. Internet explorer, Mozilla)

Software Interfaces: The Ingestion Workflow must be able to invoke webservices remotely

and must be able to work on a cluster infrastructure. The workflow must implement an easy

extendable architecture.

ASSETS Ingestion Services – 2nd release Page 23 D2.1.3 V1.3

4. Technical Documentation:

4.1 UML Diagrams

4.1.1 Knowledge extraction service

Use case: Training of a knowledge extraction model

The Knowledge Extraction Service is based on the use of supervised learning algorithms. In

order to allow the service to perform knowledge extraction of a certain type of information,

a training set has to be provided as input to the learning algorithm. The training set consists

of examples of records in which the relevant information to be extracted has been manually

annotated by human experts.

Actor: Content provider.

The content provider generates a training set containing manually annotated records in

order to support the machine learning process of the knowledge extraction service for

relevant information types, e.g., time expressions, named entities (persons, locations,

organizations).

Basic flow of events:

ASSETS Ingestion Services – 2nd release Page 24 D2.1.3 V1.3

Figure 3 Flow of events for the training of the extraction service

0. The use case begins when the learning algorithm is provided with a training set of

examples of annotated records.

1. The relevant textual metadata fields of the records composing the training set are

processed by linguistic and statistical tools in order to produce their vectorial

representation that will then be processed by the learning algorithm.

2. The learning algorithm processes the vectorial representations and learns a

knowledge extraction model.

3. The information relative to the transformation of records into the corresponding

vectorial representations and the knowledge extraction model are stored for future

use by the knowledge extraction service.

4. In case an error condition happens during the execution, any exception is caught by

an exception handler that manages the error in order to guarantee a safe conclusion

of the process (e.g., properly releasing the acquired resources).

5. The learning process ends.

Key scenarios:

ASSETS Ingestion Services – 2nd release Page 25 D2.1.3 V1.3

1. Success: correct input parameters and well-formed training set.

2. Error: wrong input parameters or incorrect training set format.

Post-conditions:

1. Success: an extraction model is generated and made available to the ingestion

workflow.

2. Error: no extraction model is generated and an error message is returned.

Use case: Knowledge Extraction Service invocation

The Knowledge Extraction Service is a plugin in the Ingestion workflow service and provides

enrichment functionality.

Actor: ASSETS ingestion workflow user.

As part of the configuration of the ingestion workflow service, the actor selects the records

to be processed by the knowledge extraction service, the proper type of knowledge to be

extracted, and after the service execution the actor inspects the results.

ASSETS Ingestion Services – 2nd release Page 26 D2.1.3 V1.3

Figure 4 Flow of the events for the enrichment process based on the extraction

service

Basic flow of events:

0. The ingestion workflow service notifies the knowledge extraction service about the

records that have to be processed, the type of knowledge that has to be extracted

from records, and other relevant parameters. Ingestion service sends the records to

be processed to the knowledge extraction service. If a knowledge extraction model

for the required type of information is not available, the extraction process

immediately ends; no output is produced.

1. The proper knowledge extraction model and the information relative to the

transformation of records into the corresponding vectorial representations are

retrieved from storage.

2. The records provided in input are converted into vectorial representations.

3. Each vectorial representation is processed by the knowledge extraction model,

resulting in annotation/extraction of pieces of text from the original record. Such

ASSETS Ingestion Services – 2nd release Page 27 D2.1.3 V1.3

pieces of text are used to fill in the metadata fields that are designed to store the

type of information that is the subject of the extraction process (e.g., author, date).

4. In case an error condition happens during the execution, any exception is caught by

an exception handler that manages the error in order to guarantee a safe conclusion

of the process (e.g., properly releasing the acquired resources).

5. Once the knowledge extraction service has completed its processing, the ingestion

service retrieves the enriched version of the records from the knowledge extraction

service.

Key scenarios:

1. Success: the input parameters are correct and the requested knowledge extraction

model is available.

2. Error: wrong input parameters or the requested knowledge extraction model is

unavailable.

Post-conditions:

1. Success: an enriched and distinct copy of the input record is made available to the

ingestion workflow service.

2. Error: no enriched records are generated.

4.1.2 Metadata classification service

Use case: Training of a classification model

The Metadata Classification Service is implemented by using supervised learning algorithms.

In order to allow the service to perform classification of records under a given classification

scheme, a training set has to be provided as input to the learning algorithm. The training set

consists of examples of records that have been manually classified by human experts.

Actor: Content Provider.

The content provider generates a training set in the form of manually classified records, in

order to support the training of the automatic metadata classification service for relevant

classification schemes.

Basic flow of events:

ASSETS Ingestion Services – 2nd release Page 28 D2.1.3 V1.3

Figure 5 Flow of events for the training of the classification service

0. The use case begins when the learning algorithm is provided with a training set of

examples of classified records.

1. The textual metadata fields of the records composing the training set are combined

and processed by linguistic and statistical tools in order to produce vectorial

representation that will then be processed by the learning algorithm.

2. The learning algorithm processes the vectorial representations and learns a

classification model.

3. The information relative to the transformation of records into the corresponding

vectorial representations and the classification model are stored for future use by

the classification service.

4. In case an error condition happens during the execution, any exception is caught by

an exception handler that manages the error in order to guarantee a safe conclusion

of the process (e.g., properly releasing the acquired resources).

5. The learning process ends.

ASSETS Ingestion Services – 2nd release Page 29 D2.1.3 V1.3

Key Scenarios:

1. Success: correct input parameters and well-formed training set.

2. Error: wrong input parameters or training set in incorrect format.

Post-conditions:

1. Success: a classification model is generated and made available to the ingestion

workflow service.

2. Error: no classification model is generated.

Use case: metadata classification service invocation

The Metadata Classification Service is a plugin in the Ingestion workflow service and

provides the enrichment functionality.

Actor: ASSETS ingestion workflow manager (user).

As part of the configuration of the ingestion workflow service, the actor selects the records

to be processed by the metadata classification service; the proper classification scheme is

then applied, and after the service execution the actor inspects the results.

ASSETS Ingestion Services – 2nd release Page 30 D2.1.3 V1.3

Basic flow of events:

Figure 6 Flow of the events for the enrichment process based on the classification

service

0. The ingestion workflow service notifies the metadata classification service about the

records that have to be processed, the classification scheme to be applied, and

other relevant parameters. Ingestion workflow service sends the records to be

processed to the classification service.

1. The proper classification model and the information relative to the transformation

of records into the corresponding vectorial representations are retrieved from

storage.

2. The records provided in input are converted into vectorial representations.

3. Each vectorial representation is processed by the classification model, resulting in

classification label begin associated to the original record.

4. In case an error condition happens during the execution, any exception is caught by

ASSETS Ingestion Services – 2nd release Page 31 D2.1.3 V1.3

an exception handler that manages the error in order to guarantee a safe conclusion

of the process (e.g., properly releasing the acquired resources).

5. Once the classification service has completed its processing the ingestion service

retrieves the classified version of the records from the classification service.

Key scenarios:

1. Success: the input parameters are correct and the requested metadata classification

model is available.

2. Error: wrong input parameters or the requested metadata classification model is

unavailable.

Post-conditions:

1. Success: an enriched and distinct copy of the input record is made available to the

ingestion workflow service.

2. Error: no enriched records are generated.

4.1.3 Ingestion workflow management

The execution of the Ingestion Workflow will perform the actions indicated in the activity

diagram presented in the Figure 7. This use-case describes the activities which are

performed during the invocation of the ingestion workflow. The main goal of this service is

to integrate and manage the execution of the metadata enrichments as an integrated

process. A (web based) graphical interface was implemented in order to allow the users to

perform the following actions:

• start the execution of the ingestion workflow,

• monitor the progress of the execution,

• verify the successful workflow execution,

• visualize error reports.

ASSETS Ingestion Services – 2nd release Page 32 D2.1.3 V1.3

Figure 7 Activity diagram for ingestion workflow management

Basic flow of events:

0. Start. The execution of the use-case begins when the user accessed a corresponding

screen in the graphical interface

1. Initialize Workflow Execution. The first step in the workflow will initialize the execution.

This step must resolve problems like: loading component configurations, localizing and

connecting to the local resources, etc. The ingestion workflow will process a bundle of

ASSETS Ingestion Services – 2nd release Page 33 D2.1.3 V1.3

objects grouped in a collection. This step will also allow users to upload their own metadata

collections and training sets to the server.

2. Harvest Binary Content. The second step in the execution workflow could optionally

invoke the service responsible for harvesting the binary files associated with the given

collection (only if a valid reference is available in item's metadata). The files which are not

available will be skipped; the broken links will be reported in service logs. If the file was

already downloaded in a previous execution, the harvesting will be skipped in order to

speed up the process and to avoid overload on the content provision server.

3. Knowledge Extraction. Invocation of the knowledge extraction service. See Knowledge

Extraction Service Requirements

4. Show Progress / Step Completion. The most of the services invoked by the ingestion

workflow are long lasting processes. Therefore, they will be started asynchronously and the

progress of the computations will be provided by request. Therefore the activities Nr. 4-6-8

will be implemented as loop activities, and will permanently indicate the progress of the

associated activity.

5. Metadata Classification. Invocation of the metadata classification service. See Metadata

Classification Service Requirements

6. Show Progress / Step Completion. See step 4.

7. Metadata Ingestion. The enriched metadata will be stored in the ASSETS/Europeana

(backend) database.

8. Show Progress / Step Completion. See step 4.

9. Exception Handler. The invocation of each activity from the ingestion workflow may fail

and throw an exception. The exception handler is responsible for extracting the user friendly

information from the caught exceptions and passing this information to the next processing

step.

10. Error Report generation. In the case that a workflow execution exception occurred, an

error report will be generated, stored in the system logs and shown to the user.

11. Finalize Workflow Execution. For either faulty or successful execution, the ingestion

workflow must terminate with releasing the locked resources and sending user notification.

Eventually, information about the execution of the ingestion workflow can be stored in the

database.

4.2 Service APIs

4.2.1 Knowledge extraction service

The Knowledge Extraction service exposes its functionalities through three interfaces.

Service Name Knowledge Extraction

Responsibility 1. Extraction of structured information from unstructured textual

metadata fields within Europeana metadata records

ASSETS Ingestion Services – 2nd release Page 34 D2.1.3 V1.3

Provided

Interfaces

1. KnowedgeExtractionTrainer,

2. KnowledgeExtractionManager,

3. KnowledgeExtractor

Dependencies ASSETS common

The KnowledgeExtractionManager interface enables the management of the available

knowledge extraction model.

Interface

Name

KnowledgeExtractionManager

Key Concepts MetadataKnowledgeExtractionModel, KnowledgeExtractorDescriptor

Operations • listMetadataKnowledgeExtractor: lists the knowledge extractor

models available for enrichment.

• deleteMetadataKnowledgeExtractor: deletes a knowledge extractor

model.

• getKnowledgeExtractorDescriptor: returns a descriptor of the

knowledge extractor model detailing the type of extracted

information.

The KnowledgeExtractionTrainer interface enables the creation of new extraction models

based on a proper formatted training set. It also allows checking the status of a training

process.

Interface

Name

KnowledgeExtractionTrainer

Key Concepts MetadataKnowedgeExtractionTrainingSet,

MetadataKnowledgeExtractionModel

Operations • trainMetadataKnowledgeExtractor: learns an extraction model with

the provided training data.

• getTrainingStatus: returns the status of a learning process.

The KnowledgeExtraction interface enables the use of a trained extraction model to enrich a

metadata record.

Interface

Name

KnowledgeExtractor

Key Concepts MetadataDataset, MetadataKnoledgeExtractionModel

Operations • extractKnowledgeFromMetadata: enriches a metadata record using a

previously trained knowledge extraction model.

ASSETS Ingestion Services – 2nd release Page 35 D2.1.3 V1.3

Any training request is assigned with a unique identifier. The status of a training process is

described by an enumeration that lists four possible states of a training process (see Figure

8). The type of information extracted by an extraction model is described by a

KnowledgeExtractionDescriptor object (see Figure 8).

Figure 8 Knowledge Extraction Data Model

ASSETS Ingestion Services – 2nd release Page 36 D2.1.3 V1.3

Figure 9 Knowledge Extraction REST API

ASSETS Ingestion Services – 2nd release Page 37 D2.1.3 V1.3

Figure 10 Knowledge Extraction API

ASSETS Ingestion Services – 2nd release Page 38 D2.1.3 V1.3

4.2.2 Metadata classification service

The Metadata Classification service exposes its functionalities through three interfaces.

Service Name Metadata Classification

Responsibility 1. Classification of Europeana metadata records on relevant taxonomies

Provided

Interfaces

1. ClassificationTrainer,

2. ClassificationManager,

3. ClassificationService

Dependencies ASSETS common

The ClassificationManager interface enables the management of the available knowledge

extraction model.

Interface

Name

ClassificationManager

Key Concepts MetadataClassificationModel

Operations • listMetadataClassifier: lists the available metadata classifier models.

• deleteMetadataClassifier: deletes a metadata classifier model.

The ClassificationTrainer interface enables the creation of new extraction models, based on

a proper training set, and the control of the status of a training process.

Interface

Name

ClassificationTrainer

Key Concepts MetadataClassificationTrainingSet, MetadataClassificationModel

Operations • trainMetadataClassifier: learns a metadata classifier model, using the

provided training data.

• getTrainingStatus: returns the status of a learning process.

The ClassificationService interface enables the use of a trained extraction model to classify a

metadata record under a taxonomy of interest.

Interface

Name

ClassificationService

Key Concepts MetadataDataset, MetadataClassificationModel

Operations • classifyMetadata: classifies a metadata record using a metadata

classifier model.

Any training request is assigned a unique identifier. The status of a training process is

ASSETS Ingestion Services – 2nd release Page 39 D2.1.3 V1.3

described by an enumeration that lists four possible states of a training process. The type of

taxonomy applied by a classification model is described by a

MetadataClassificationDescriptor object.

Figure 11 Metadata Classification Service API

ASSETS Ingestion Services – 2nd release Page 40 D2.1.3 V1.3

Figure 12 Metadata Classification REST API

ASSETS Ingestion Services – 2nd release Page 41 D2.1.3 V1.3

4.2.3 Ingestion workflow management service

The ingestion workflow management service is implemented as a client-server application

which provides a rich graphical user interface for invocation of the enrichment services. It is

implemented as an extension of the Europeana ingestion control panel and it is

implemented using the Google web toolkit (gwt) technology. The details of the GUI

implementation are presented in the following tables and UML diagrams.

The following table presents a brief overview of the service and the most important

interfaces it uses:

Service Name Ingestion workflow management – Frontend

Responsibility Provides a GUI for performing the enrichment activities

Provided

Interfaces

AssetsIngestionControlPanel ,

EnrichmentServiceProxy,

Dependencies Europeana ingestion framework, knowledge extraction service, metadata

classification service

Assets control panel

The ASSETS ingestion control panel is the class responsible for the binding of the enrichment

screens into the ingestion application. The rendering of the enrichment screens (see Section

5.3) is handled by special classes which extends the GWT Widget class. The overview of the

AssetsIngestionPanel class is presented in the following table and the UML diagram

presenting the details of these classes is available in Figure 13:

Interface

Name

AssetsIngestionControlPanel extends EuropeanaIngestionControlPanel

Key Concepts AssetsModelLearningWidget (model learning screen)

AssetsEnrichmentTestWidget (enrichment test screen)

AssetsCollectionKnowledgeExtractionWidget (knowledge extraction

screen)

AssetsCollectionClassificationWidget (metadata classification screen)

Operations • onModuleLoad(): enhances the method in the parent class by adding

the initialization of the enrichment service

• addMenuEntries(): enhances the method in the parent class by

binding the enrichment screens in the main menu

Assets Enrichment Service Proxy

The enrichment service is in charge of executing the operations requested through the

control panel. It provides methods that handle the asynchronous communication between

the client (web browser) and the UIM server. The data transferred between client and

server is packaged as data transfer objects (DTOs). The enrichment service proxy is

ASSETS Ingestion Services – 2nd release Page 42 D2.1.3 V1.3

responsible for the invocation of the knowledge extraction and metadata classification

services and the aggregation of the information displayed in the enrichment screens. The

EnrichmentServiceProxy interface is briefly documented in the following table and the full

class diagram with dependencies is presented in Figure 14:

Interface

Name

EnrichmentServiceImpl implements EnrichmentServiceProxy

Key Concepts CollectionEnrichmentResultDTO: Object used to group together the

information displayed after running the enrichment processes on a

collection

CollectionObjectDTO: Object used to represent the enriched collection

object

CollectionObjectPreviewDTO: Object used to present a preview of a

collection object by displaying the most common information.

EnrichmentModelDTO: Object used to display the properties of the

enrichment models in the GUI

EnrichmentResultDTO: Container object used to keep references to the

input and the output of the (testing of the) enrichment process

EuropeanaCollectionDTO: Object used to represent the basic information

related to the metadata collections in the GUI

ModelLearningStatusDTO: Object used to display the status of the model

learning in the GUI

SearchCriteriaDTO: Object used for collecting the search filter used by

users to select the content.

Operations • learnModel(): Method used for invoking the learning the enrichment

model from the provided training set

• getModelList(): Method used to retrieve the list of the available

enrichment models

• getColectionList(): Method used for retrieving the list of collections

already ingested in Europeana application

• getCollectionObjects(): Method used to retrieve the preview of the

objects available in a collection with a given id.

• getModelStatus(): Checks the learning status for a model with a given

id.

• deleteModel(): Method used to invoke the deletion of enrichment

models

• performKnowledgeExtraction(): The method used for invoking the

knowledge extraction enrichment for the object identified by a given

URI

• getDataProviderList():The method used to retrieve the list of the data

ASSETS Ingestion Services – 2nd release Page 43 D2.1.3 V1.3

providers for given aggregator name

• searchObjects(): Method used to search for objects in Europeana

index by using a given search criteria

• performKnowledgeExtraction(fileName): Method used to invoke the

enrichment for all objects available in a given file

• getColectionFileList(): Method used to retrieve the list of the collection

files that are already uploaded on the server.

• performMetadataClassification(): Method used for performing the

metadata classification enrichment of all objects available in a given

collection

ASSETS Ingestion Services – 2nd release Page 44 D2.1.3 V1.3

ASSETS Ingestion Services – 2nd release Page 45 D2.1.3 V1.3

Figure 13 Assets Ingestion Panel API

Figure 14 Enrichment Service API

ASSETS Ingestion Services – 2nd release Page 46 D2.1.3 V1.3

4.3 Software Packaging

The ingestion services are 100% java code, and are developed using Eclipse IDE and Maven

built management.

The metadata classification service depends on:

• Jatecs-1.1, for indexing, transformation in vectorial form, learning algorithms, and

application of learned model to metadata records.

• Trove-2.1, for the efficient data structures used to store models and vectors.

The knowledge extraction service depends on:

• Stanford-corenlp-11.6.19, for POS tagging, and lemmatization.

The ingestion workflow management web application depends on:

• Ingestion-knowledgeextraction-client, lightweight library used for the remote

invocation of knowledge extraction service

• Ingestion-metadataclassification-client, lightweight library used for the remote

invocation of metadata classification service

• (ASSETS) Comon-client, lightweight library used for the remote invocation of

common functionality of the ASSETS platform. It is used to retrieve the collections

and the metadata available on remote ASSETS servers.

• Europeana-uim-gui-controlpanel, the web application implementing the standard

functionality of the Europeana ingestion process.

The built process of all the ASSETS components is managed by Hudson, which automatically

builds all components every night. The following artefacts are created for the ingestion

services:

• ingestion-knowledgeextraction-0.0.1-SNAPSHOT.war, the web application which

implements the server side processing of the knowledge extraction service. The

service interface is exposed as web services through the REST interface.

• ingestion-metadataclassification-0.0.1-SNAPSHOT.war, the web application which

implements the server side processing of the metadata classification service. The

service interface is exposed as web services through the REST interface.

• ingestion-knowledgeextraction-client-0.0.1-SNAPSHOT.jar, the lightweight library

providing the JAVA API for remote invocation of the knowledge extraction service.

• ingestion-metadataclassification-client-0.0.1-SNAPSHOT.jar, the lightweight library

providing the JAVA API for remote invocation of the metadata classification service.

• assets-uim-gui-controlpanel-0.0.1-SNAPSHOT.war, the web application

implementing the GUI used for the execution of ingestion and enrichment

processes.

ASSETS Ingestion Services – 2nd release Page 47 D2.1.3 V1.3

4.4 Installation and configuration

Both enrichment services require to be provided the path in the file system where the

learned models will be temporarily stored. The XML files containing batches of metadata

records given as input through the training sets are also saved locally. The enriched XML

files produced as output are stored permanently in the subfolders of the same path.

For the metadata classification service the properties are set in the file assets-ingestion-

metadataclassification.properties :

path_to_models = ./services/ingestion-metadataclassification/data

path_to_batches = ./services/ingestion-metadataclassification/batches

For the knowledge extraction service the properties are set in the file assets-ingestion-

knowledgeextraction.properties:

path_to_models = ./services/ingestion-knowledgeextraction/data

path_to_batches = ./services/ingestion-knowledgeextraction/batches

The ingestion workflow management application uses the

AssetsIngestionControlPanel.gwt.xml and assets-uim-gui-controlpanel.properties

configuration files which are available under project resources. The xml file is used for

configuring the GWT engine by defining the AssetsIngestionControlPanel module. The

information in this file is static and it is used for deploying the GWT application on the

server. On the contrary, the .properties file contains information which is specific to each

individual server:

#folder to upload the training sets for knowledge extraction
knowledge.extraction.models.folder = /assets/enrichment

folder to upload collections for performing the knowledge
extraction tasks (take care for whitespaces at the end of
properties)
knowledge.extraction.collections.original.folder =
./collections/original
knowledge.extraction.collections.original.baseurl =
http://127.0.0.1:8888/collections/original

folder to upload collections for performing the knowledge
extraction tasks (take care for whitespaces at the end of
properties)
knowledge.extraction.collections.enriched.folder =
./collections/extraction
knowledge.extraction.collections.enriched.baseurl =
http://127.0.0.1:8888/collections/extraction

#folder to upload the training sets for knowledge extraction (take
care for whitespaces at the end of properties)
classification.models.folder = /assets/enrichment

folder to upload collections for performing the metadata
classification tasks (take care for whitespaces at the end of
properties)
classification.collections.original.folder = ./collections/original

ASSETS Ingestion Services – 2nd release Page 48 D2.1.3 V1.3

classification.collections.original.baseurl =
http://127.0.0.1:8888/collections/original

folder to upload collections for performing the knowledge
extraction tasks (take care for whitespaces at the end of
properties)
classification.collections.enriched.folder =
./collections/classification
classification.collections.enriched.baseurl =
http://127.0.0.1:8888/collections/classification

ASSETS Ingestion Services – 2nd release Page 49 D2.1.3 V1.3

5. User Manual

This section gives the final user some guidelines to follow in order to define the set of

metadata records to be included into the training set, so to ensure an accurate model will

be generated by the learning processes. It also describes the XML data format for the

specification of training sets for the knowledge extraction and metadata classification

services.

5.1 Knowledge extraction service

5.1.1 Training set definition guidelines

A training set is composed of a single file that specifies both the set of concepts to be

extracted and some annotated training examples where the concept to be extracted is

present.

For example, if the set of relevant concepts includes ‘Name of person’, there must be

examples where it is possible to locate the name of a specific concept, e.g., “Thomas Edison

invented the filament lamp in America.”

Typical relevant concepts are those of Person (e.g., “Thomas Edison”, “Barack Obama”),

Organisation (e.g., “ONU”, “United States of America”, “USA”), Location (e.g., “Alps”,

“Paris”). A relevant concept could be also a specialization of a general one (e.g., Music

composer, Non-governmental organisation, Address) or be domain-specific (e.g., Painting

technique, Music style, Tool).

The mentions of entities that are instances of such concepts (e.g., “Oil painting of a view of

the Arno river”, “Recording of the rock concert held in London in 1982”, “Wooden sculpture

of a head, sculpted with a carving fish tail”) are identified in text and annotated accordingly.

In order to prepare the training set for the Knowledge Extraction service the users should

perform the following steps:

1. identify a set of concepts that are relevant for their activities and for which they can

provide a critical mass of training examples;

2. identify a set of metadata records to be submitted as training examples. Such

metadata records should be representative cases in which a relevant concept (e.g.,

a person's name) occurs in an unstructured textual field (e.g., in the <description>

field);

3. locate the concepts in the textual fields of the examples and verify whether or not it

will be necessary to indicate also the exact position of the concept in the text. If the

position is not specified, then any instance of the annotated concept in the text is

considered as an occurrence of that concept. For example, in "Paris Hilton went to

Paris" the annotation of the location "Paris" must specify the position in text
2
,

otherwise the name of Paris Hilton will also be considered as an occurrence of the

location (if Paris Hilton is marked as a person, then the word Paris in Paris Hilton is

2 The various methods to indicate the position will be presented in next section, when discussing an example of a training set.

ASSETS Ingestion Services – 2nd release Page 50 D2.1.3 V1.3

considered to have two annotations of different types);

4. specify each occurrence of the concept by explicitly specifying the field where the

concept occurs and, if needed, its position.

With respect to the number of metadata records to be inserted into the training set, the

basic guideline is that the more examples the learning algorithm gets in input, the more

probably the learned automatic extractor will be accurate and able to recognize instances of

concepts never seen before.

A second guideline is that each concept in the set of relevant concepts should get a relevant

number of examples (an indicative number is 1,000 examples per concept). It is not relevant

for each metadata record in the training set to contain examples for each possible concept.

5.1.2 Training data format

The training sets created according to the previous guidelines must respect the syntax

specified in the XSD schema file extractionSchema.xsd that defines the XML elements

describing a training set. The extractionSchema.xsd file is part of the ASSETS software

repository, and it is also fully included in Appendix A. Now we discuss in detail an example of

a training set. We will show the steps that a user needs to perform in order to extract

knowledge and, in particular, the name of a person from the following metadata record:

<europeanaRecord>

 <title>Lamp</title>

 <description>

 Thomas Edison invented the filament lamp in America at almost the

 same time as Joseph Swan did in England. He produced this type of lamp

 in 1880. This particular bulb comes from Pullar’s Dye Works in Perth, one

 of the first buildings in Australia to install Edison lights.

 </description>

 <source>Tyne and Wear Imagine</source>

 <provider>CultureGrid ; Uk</provider>

 <identifier>http://www.imagine.org.uk/details/index.php?id=TWCMS:B5141a</i

dentifier>

 <subject> inventors and innovators; people</subject>

 <type>Image</type>

</europeanaRecord>

We are interested in extracting the names of persons (Thomas Edison, Joseph Swan), the

names of places (America, Australia), and the names of organization (Pullar's Dye Works).

The training set starts with the following lines:

<?xml version="1.0" encoding="UTF-8"?>

<extractionTrainingSet xmlns="http://www.example.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.example.org/ExtractionSchema.xsd ">

The first line declares the XML version used in the file; the second line refers to the XML

Schema that defines the syntax for the document, with a reference to the site

http://www.example.org, which is only a dummy name that will be replaced with the real

URL of the xsd file once the service is deployed.

ASSETS Ingestion Services – 2nd release Page 51 D2.1.3 V1.3

After the short preamble, the extraction task is defined (XML comments are given inline to

better clarify each element purpose):

 <extractionTask>

 <!-- This is the name of the field of the records from which information has to be

extracted -->

 <sourceFieldName>description</sourceFieldName>

 <conceptSet>

 <!-- This is a descriptive name for the extraction task -->

 <name>NER for persons, organizations and locations</name>

 <!-- Optional pointer to a resource that describes the concept set -->

 <URI>http://en.wikipedia.org/wiki/Named_entity_recognition</URI>

 <concepts>

 <concept>

 <!-- Name of the concept to be extracted -->

 <name>person</name>

 <!-- Optional pointer to a resource describing the concept -->

 <URI>http://en.wikipedia.org/wiki/Person</URI>

 <!-- Optional name of the target field in the record that has to be filled with

extracted information -->

 <targetField>extractedPerson</targetField>

 </concept>

 <concept>

 <name>organization</name>

 <URI>http://en.wikipedia.org/wiki/Organization</URI>

 <targetField>extractedOrganization</targetField>

 </concept>

 <concept>

 <name>location</name>

 <URI>http://en.wikipedia.org/wiki/Place_(geography)</URI>

 <targetField>extractedLocation</targetField>

 </concept>

 </concepts>

 </conceptSet>

 </extractionTask>

The sourceFieldName element describes the unstructured textual field of the metadata

record from which information has to be extracted, “description” in this case.

In this example the set of concepts refer to a Named Entity Recognition (NER) task for

persons, organization, and location. After naming the task, the set of concepts is specified:

for each concept (described by a concept element), the user can optionally provide an URI

describing in detail the aim of the task, and the target field of the output XML file where the

extracted information will be stored (targetField).

It is relevant to note that in the current implementation the optional targetField

information, if specified, is not used by the service, which instead stores the automatically

extracted information in a custom JSON-formatted element, the dcterms:references

element of the ESE format (which was found to be the appropriate field for storing this type

of information). This custom solution is due to the limited possibility of expansion of the ESE

ASSETS Ingestion Services – 2nd release Page 52 D2.1.3 V1.3

format. However the targetField field has been left in the training data format in order to

support its future use with the EDM format.

Once the concept set has been defined, the user must provide the automatic information

extractor with a set of examples in order to train it properly.

All the examples are listed within an examples element, and each example is composed by

two parts, the metadata record and the list of extracted concepts (stand-off annotation):

 <examples>

 <example>

 <record>

 <europeanaRecord>

 <title>Lamp</title>

 <description>Thomas Edison invented the filament lamp in America at almost the

same time as Joseph Swan did in England. He produced this type of lamp in 1880. This

particular bulb comes from Pullar's Dye Works in Perth, one of the first buildings in

Australia to install Edison lights.</description>

 <source>Tyne and Wear Imagine</source>

 <provider>CultureGrid ; Uk</provider>

<identifier>http://www.imagine.org.uk/details/index.php?id=TWCMS:B5141a</identifi

er>

 <subject> inventors and innovators; people</subject>

 <type>Image</type>

 </europeanaRecord>

 </record>

 <extractedConcept>

 <name>person</name>

 <extractedText>Thomas Edison</extractedText>

 <!-- A position specification is required when multiple instances of the extracted text

appear in the field with different role. In this case no position is required.-->

 <!-- In case a position is necessary, it can be expressed by copying the extracted text

with enough surrounding text in order to make it uniquely identifiable. See examples in

following concept extractions.-->

 <URI>http://viaf.org/viaf/66552944/#Edison, Thomas A. (Thomas Alva), 1847-

1931</URI>

 </extractedConcept>

 <extractedConcept>

 <name>location</name>

 <extractedText>America</extractedText>

 <!-- Also for this case the position is not required. It is just reported as an example. --

>

 <position>

 <context>lamp in America at almost</context>

 </position>

 <URI>http://www.geonames.org/maps/google_39.76_-98.5.html</URI>

 </extractedConcept>

 <extractedConcept>

 <name>person</name>

ASSETS Ingestion Services – 2nd release Page 53 D2.1.3 V1.3

 <extractedText>Joseph Swan</extractedText>

 <!-- Position can also be expressed as the offset in number of characters from the

beginning of the text in the field. -->

 <position>

 <startCharacterPosition>80</startCharacterPosition>

 <endCharacterPosition>91</endCharacterPosition>

 </position>

 <URI>http://viaf.org/viaf/15100261/#Swan, Joseph Wilson, 1828-1914</URI>

 </extractedConcept>

 <extractedConcept>

 <name>location</name>

 <extractedText>England</extractedText>

 <URI>http://www.geonames.org/2635167/united-kingdom-of-great-britain-and-

northern-ireland.html</URI>

 </extractedConcept>

 <extractedConcept>

 <name>organization</name>

 <extractedText>Pullar's Dye Works</extractedText>

<URI>http://canmore.rcahms.gov.uk/en/site/127331/details/perth+pullar+s+dyeworks/

</URI>

 </extractedConcept>

 <extractedConcept>

 <name>location</name>

 <extractedText>Perth</extractedText>

 <URI>http://www.geonames.org/2063523/perth.html</URI>

 </extractedConcept>

 <extractedConcept>

 <name>location</name>

 <extractedText>Australia</extractedText>

 <URI>http://www.geonames.org/2077456/commonwealth-of-australia.html</URI>

 </extractedConcept>

 <extractedConcept>

 <name>person</name>

 <extractedText>Edison</extractedText>

 <position>

 <context>to install Edison lights</context>

 </position>

 <URI>http://viaf.org/viaf/66552944/#Edison, Thomas A. (Thomas Alva), 1847-

1931</URI>

 </extractedConcept>

 </example>

 </examples>

For example, for the name of person “Thomas Edison” the user should prepare the XML

element:

 <extractedConcept>

 <name>person</name>

ASSETS Ingestion Services – 2nd release Page 54 D2.1.3 V1.3

 <extractedText>Thomas Edison</extractedText>

 <URI>http://viaf.org/viaf/66552944/#Edison, Thomas A. (Thomas Alva), 1847-

1931</URI>

 </extractedConcept>

where there is no position indicated since there are no ambiguities in the description field of

the metadata record this extractedConcept refers to.

In the case the position must be indicated, the user may choose among different

alternatives. They may select the context where the instance occurs, like, e.g., for the

second concept to be extracted:

 <position>

 <context>lamp in America at almost</context>

 </position>

Alternatively, they may indicate the position in the description where the instance occurs.

An example of this second option can be found in the third extracted concept:

 <position>

 <startCharacterPosition>80</startCharacterPosition>

 <endCharacterPosition>91</endCharacterPosition>

 </position>

Appendix A contains the complete listing of the above example.

5.1.3 Stand-alone test user interface

Though the knowledge extraction service is meant to be accessed by users as a plugin of the

ingestion workflow, we have developed a graphical user interface (GUI) that allows the user

to directly connect to the service. The GUI uses the knowledge extraction client library to

access the server through the REST interface that the server-side application exposes.

The original purpose of the test GUI is to allow developers to have a direct access to the

knowledge extraction service for testing and debug purposes, but also skilled users can

benefit from its availability.

In the knowledge extraction client repository, the GUI application is defined in the

TestIngestionKnowledgeExtractionGui class, which is part of the

eu.europeana.assets.ingestion.knowledgeextraction.client package.

The GUI is composed by three areas (see Figure 15):

� the top left area is devoted to set and start training requests;

� the bottom left area is devoted to set and start enrichment requests;

� the right area gives feedback on any request.

In order to train a new knowledge extraction model, the user can select a training file

(Figure 16) and launch the learning process. During the training process the GUI gives

periodical feedback on the status.

ASSETS Ingestion Services – 2nd release Page 55 D2.1.3 V1.3

Figure 15 Test GUI for knowledge extraction

Once completed, the new knowledge extraction model is made available for selection in the

list of models (Figure 17).

ASSETS Ingestion Services – 2nd release Page 56 D2.1.3 V1.3

Figure 16 Selection of training file

Figure 17 Output of training process and selection of the trained model for

enrichment of metadata records

ASSETS Ingestion Services – 2nd release Page 57 D2.1.3 V1.3

Figure 18 Selection of an XML file for enrichment

A drop-down list displays all the available knowledge extraction models. The user can select

an entire XML file containing metadata records in ESE format for batch processing (Figure

18), or can specify the values of the title and description fields of a “dummy” custom-made

record, in order to quickly check the output generated by a model.

When processing a file, the output window gives feedback on the progress of the process

(Figure 19).

The enriched metadata records are saved in the same directory of the source file, with the

“enrichedExtraction.” prefix.

In the example, the output of the enrichment process of the “ina_10_ESE.xml” file is saved

in the “enrichedExtraction.ina_10_ESE.xml”. Since the input and the output files differ only

for the additional information added by the knowledge extraction process, the output file

can be used as input for another enrichment process or as a direct substitute of the input

file in the ingestion process.

ASSETS Ingestion Services – 2nd release Page 58 D2.1.3 V1.3

Figure 19 Enrichment of an XML file

When applied to a custom-made metadata record, the output window shows a list of the

concepts extracted from the metadata record (Figure 20).

It is worth to be noted the “- fr -” suffix to the names of available extractors is automatically

determined by a language recognition module that is part of the knowledge extraction

service.

A user can simultaneously send more than one train and/or enrichment requests, since the

service is designed to support concurrent requests. The only issue is that the feedback from

the various requests will be mixed when printed in the output window.

ASSETS Ingestion Services – 2nd release Page 59 D2.1.3 V1.3

Figure 20 Enrichment of a custom-made metadata record

5.2 Metadata classification service

5.2.1 Training set definition guidelines

The user needs to prepare an XML file containing both the taxonomy of semantic categories

its metadata belong to and some training examples composed of metadata record and

desired category related to the chosen taxonomy. For instance, if a user has the following

metadata record:

<recording>

 <title>The Marriage of Figaro</title>

 <author>Wolfgang Amadeus Mozart</author>

 <year>1943</year>

 <director>Paul Breisach</director>

 <orchestra>Metropolitan Opera Orchestra</orchestra>

 <location>New York</location>

</recording>

and wants it to be classified into the “Classical” music category, then the user needs to

prepare a labelled training example where the category “Classical” is associated to the

previous metadata record.

ASSETS Ingestion Services – 2nd release Page 60 D2.1.3 V1.3

Concerning the taxonomy, users with similar thematic collections are invited to select a

common classification taxonomy. In fact, if there were a single taxonomy, the classifier

induced by a training set coming from a given user might also be used with success on

metadata coming from another user.

In order to prepare a training set for the metadata classification service, the user should

perform the following steps:

1. select a classification taxonomy. The service is able to work with both a flat or a

hierarchical taxonomy;

2. select a set of metadata records;

3. associate to each metadata record (selected in the previous step) one or more

categories belonging to the taxonomy defined at step 1.

With respect to the number of metadata record to be inserted into the training set, the

basic guideline is that the more examples the learning algorithm gets in input, the more

probably the learned automatic classifier will be accurate in the assignment of the

categories.

A second guideline is that each relevant category in the taxonomy should get a relevant

number of examples (an indicative number is having a training set of at least 1,000

metadata records, with at least 10 examples for the least popular category).

It is relevant to have examples for each relevant category in the taxonomy, because any

category that is not represented by at least one example will be discarded during the

learning process and never assigned during the automatic classification process.

5.2.2 Training data format

The training sets created according to the previous guidelines must respect the syntax

specified in the XSD schema file classificationSchema.xsd that defines the XML elements

describing a training set. The classificationSchema.xsd file is part of the ASSETS software

repository, and it is also fully included in Appendix B.

Now we discuss an example of a training set in detail. We will show the steps that a user

needs to perform in order to define a training set for the classification of music recording by

genre.

As for the previous service, the training set starts with the following lines:

<?xml version="1.0" encoding="UTF-8"?>

<classificationTrainingSet xmlns="http://www.example.org/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.example.org/ClassificationSchema.xsd ">

Then, a section defines the classification taxonomy and its properties (like in previous

section in-line comments describe the meaning of each XML element):

 <classificationSchema>

 <!-- A meaningful name for the classification schema -->

 <name>a simple music genre classificiation schema</name>

 <!-- Optional URI pointing to a description of the classification schema -->

 <URI>http://en.wikipedia.org/wiki/Music_genre</URI>

ASSETS Ingestion Services – 2nd release Page 61 D2.1.3 V1.3

 <!-- Type of classification schema

 multiLabel: each record can be assigned to zero, one, or more than one class

 singleLabel: each record has to be assigned to one and only one class

 -->

 <type>singleLabel</type>

 <!-- List of classes -->

 <classes>

 <!-- Definition of a class -->

 <class>

 <!-- Class name -->

 <name>classical</name>

 <!-- Optional URI describing the class -->

 <URI>http://en.wikipedia.org/wiki/Classical_music</URI>

 </class>

 <class>

 <name>baroque</name>

 <URI>http://en.wikipedia.org/wiki/Baroque_music</URI>

 <!-- The classification schema could be hierachical. In this case "baroque" is a more

specific definition of a classical music genre. -->

 <!-- If a record is assigned to baroque it is implicitly also an example of classical

music. -->

 <!-- If a record is assigned to classical, it means that, though the record refers to

classical music, it does not belong to any of the more specific classes. -->

 <parentClassName>classical</parentClassName>

 </class>

 <class>

 <name>modern</name>

 <URI>http://en.wikipedia.org/wiki/20th-century_classical_music</URI>

 <parentClassName>classical</parentClassName>

 </class>

 <class>

 <name>romantic</name>

 <URI>http://en.wikipedia.org/wiki/Romantic_music</URI>

 <parentClassName>classical</parentClassName>

 </class>

 <class>

 <name>jazz</name>

 <URI>http://en.wikipedia.org/wiki/Jazz</URI>

 </class>

 <class>

 <name>bebop</name>

 <URI>http://en.wikipedia.org/wiki/Bebop</URI>

 <parentClassName>jazz</parentClassName>

 </class>

 <class>

 <name>funky</name>

 <URI>http://en.wikipedia.org/wiki/Funk</URI>

 <parentClassName>jazz</parentClassName>

ASSETS Ingestion Services – 2nd release Page 62 D2.1.3 V1.3

 </class>

 <class>

 <name>swing</name>

 <URI>http://en.wikipedia.org/wiki/Swing_music</URI>

 <parentClassName>jazz</parentClassName>

 </class>

 <class>

 <name>popular</name>

 <URI>http://en.wikipedia.org/wiki/Popular_music</URI>

 </class>

 <class>

 <name>country</name>

 <URI>http://en.wikipedia.org/wiki/Country_music</URI>

 <parentClassName>popular</parentClassName>

 </class>

 <class>

 <name>punk</name>

 <URI>http://en.wikipedia.org/wiki/Punk_rock</URI>

 <parentClassName>popular</parentClassName>

 </class>

 <class>

 <name>rap</name>

 <URI>http://en.wikipedia.org/wiki/Hip_hop_music</URI>

 <parentClassName>popular</parentClassName>

 </class>

 </classes>

 </classificationSchema>

The two relevant properties of a classificationSchema are

(I) the specification of the single- or multi-label classification model,

(II) the specification of any eventual hierarchy relation among categories.

In the example above, the classification schema is said to be single-label, i.e., one and only

one category can be assigned to every metadata record. Then some categories are said to

be children of other categories, e.g., baroque is a child of classic. The learning algorithm

exploits hierarchical information in order to perform a more efficient learning process and

also to improve the accuracy of the learned classification model.

The rest of the training file is composed of the examples list, i.e., manually classified

metadata records. Each example is composed of the original metadata record and a list of

assignedClass elements, listing the names of the classes assigned to the record.

 <examples>

 <example>

 <record>

 <recording>

 <title>The Marriage of Figaro</title>

 <author>Wolfgang Amadeus Mozart</author>

 <year>1943</year>

ASSETS Ingestion Services – 2nd release Page 63 D2.1.3 V1.3

 <director>Paul Breisach</director>

 <orchestra>Metropolitan Opera Orchestra</orchestra>

 <location>New York</location>

 </recording>

 </record>

 <assignedClass>classical</assignedClass>

 </example>

 <example>

 <record>

 <recording>

 <title> Brandenburg Concerto No. 1 - 1</title>

 <author>Johann Sebastian Bach</author>

 <orchestra>The Busch Chamber Players</orchestra>

 <URI>http://en.wikipedia.org/wiki/File:Bach_-_Brandenburg_Concerto_No._1_-

_1._Allegro.ogg</URI>

 </recording>

 </record>

 <assignedClass>baroque</assignedClass>

 </example>

 <example>

 <record>

 <recording>

 <title>Für Elise</title>

 <title>Bagatelle No. 25 in A minor</title>

 <author>Ludwig van Beethoven</author>

 <year>1867</year>

 </recording>

 </record>

 <assignedClass>romantic</assignedClass>

 </example>

 <example>

 <record>

 <recording>

 <title>Salt Peanuts</title>

 <composed>1942</composed>

 <year>1947</year>

 <author>Dizzy Gillespie</author>

 <description>Dizzy played for Lucky Millinder's band in the early '40s. It was a riff

this band played, after a Dizzy solo in the tune "Little John Special", that Dizzy developed

into his tune "Salt Peanuts".</description>

 <URI>http://www.youtube.com/watch?v=kOmA8LOw258</URI>

 </recording>

 </record>

 <assignedClass>bebop</assignedClass>

 </example>

 <example>

 <record>

 <recording>

ASSETS Ingestion Services – 2nd release Page 64 D2.1.3 V1.3

 <title>Gotta Lotta Love</title>

 <author>Tracy Marrow</author>

 <author>Ice-T</author>

 <album>Home invasion</album>

 <year>1993</year>

 </recording>

 </record>

 <assignedClass>rap</assignedClass>

 </example>

 <example>

 <record>

 <recording>

 <title>The river unbroken</title>

 <author>Dolly Rebecca Parton</author>

 <year>1987</year>

 <album>Rainbox</album>

 <label>CBS</label>

 <producer>Steve "Gold-E" Goldstein</producer>

 </recording>

 </record>

 <assignedClass>country</assignedClass>

 </example>

 </examples>

Appendix B contains the complete listing of the above example.

In the example, the metadata records in the training set are in a proprietary format, while

the latest release of the metadata classification service expects them to be usually in ESE

format.

The output of the metadata classification process is an exact copy of the metadata record

given in input with additional dc:subject fields, one for each assigned class. The name of the

assigned class is prefixed with the string “assets:” in order to distinguish automatically

assigned classes from the original values of that field, e.g.:

 <record>

 <dc:identifier>0023420002</dc:identifier>

 <dcterms:isPartOf>http://www.ina.fr/</dcterms:isPartOf>

 <dc:title>Le bar du bébète show : [émission du 20 février 1995]</dc:title>

 <dcterms:issued>1995-02-20</dcterms:issued>

 <dcterms:extent>0h4m59s</dcterms:extent>

 <dc:description xml:lang="fr">L'actualité de la semaine parodiée par les

marionnettes du Bébête show. Cette semaine :

- Au bar : François MITTERRAND, Henri EMMANUELLI, Jack LANG et Lionel JOSPIN

candidat à l'élection présidentielle. Arrivée de Philippe SEGUIN qui a "affronté" Edouard

BALLADUR à l'émission 7/7. Ce dernier entraine JOSPIN à être agressif.

- Publicité : "Ecoutes express" par les productions Charles Pasqua.

- Au bar : Nicolas SARKOZY et Jacques CHIRAC qui se moque d'Edouard BALLADUR.

- Bande annonce : "Chirac était son nom" avec Jacques CHIRAC en Jésus et Edouard

BALLADUR en Judas.

ASSETS Ingestion Services – 2nd release Page 65 D2.1.3 V1.3

</dc:description>

 <dc:subject>Humour</dc:subject>

 <dc:type>Animation</dc:type>

 <dc:type>Sketch</dc:type>

 <dc:subject>François Mitterrand</dc:subject>

 <dc:subject>Henri Emmanuelli</dc:subject>

 <dc:subject>Jack Lang</dc:subject>

 <dc:subject>Lionel Jospin</dc:subject>

 <dc:subject>Philippe Seguin</dc:subject>

 <dc:subject>Charles Pasqua</dc:subject>

 <dc:subject>Edouard Balladur</dc:subject>

 <dc:contributor>Guy Lecluyse</dc:contributor>

 <dc:contributor>Christian Briand</dc:contributor>

 <dc:contributor>Eric Gindre</dc:contributor>

 <dc:contributor>Michel Guidoni</dc:contributor>

 <dc:contributor>Jean Claude Poirot</dc:contributor>

 <dc:publisher>TF1(diffuseur)</dc:publisher>

 <dcterms:medium>video/mpeg</dcterms:medium>

 <dc:language>fr</dc:language>

 <dc:rights>Institut National de l'Audiovisuel</dc:rights>

<europeana:object>http://www.ina.fr/images_v2/320x240/0023420002.jpeg</europe

ana:object>

 <europeana:provider>ASSETS</europeana:provider>

 <europeana:type>VIDEO</europeana:type>

 <europeana:dataProvider>Institut National de

l'Audiovisuel</europeana:dataProvider>

 <europeana:isShownAt>http://www.ina.fr/video/0023420002/le-bar-du-bebete-

show-emission-du-20-fevrier-1995.fr.html#xtor=AL-3</europeana:isShownAt>

 <dc:subject>assets:Humour</dc:subject>

 <dc:subject>assets:Information politique économique sociale</dc:subject>

 </record>

The above metadata record of a video recording uses the dc:subject field to store different

types of information, from a thematic class (Humour) to the names of people appearing in

the video. The automatically assigned classes are listed at the end of the record.

5.2.3 Stand-alone test user interface

Though the metadata classification service is meant to be accessed by users as a plugin of

the ingestion workflow, we have developed a graphical user interface (GUI) that allows the

user to directly connect to the service. The GUI uses the metadata classification client library

to access the server through the REST interface that the server-side application exposes.

The original purpose of the test GUI is to allow developers to have a direct access to the

metadata classification service for testing and debug purposes.

In the metadata classification client repository, the GUI application is defined in the

TestIngestionMetadataClassificationGui class, which is part of the

ASSETS Ingestion Services – 2nd release Page 66 D2.1.3 V1.3

eu.europeana.assets.ingestion.metadataclassification.client package.

The GUI is composed of three areas (Figure 21):

� the top left area is devoted to set and start training requests;

� the bottom left area is devoted to set and start enrichment requests;

� the right area gives feedback on any request.

In order to train a new metadata classification model, the user can select a training file

(Figure 22) and launch a training. During the training process, the GUI gives periodical

feedback on the status of the training process.

Once completed, the new metadata classification model is made available for selection in

the list of models (Figure 23).

Figure 21 Test GUI for metadata classification

ASSETS Ingestion Services – 2nd release Page 67 D2.1.3 V1.3

Figure 22 Selection of training file

Figure 23 Output of training process and selection of the trained model for

enrichment of metadata records

A drop-down list displays all the available metadata classification models. The user can

select an entire XML file containing metadata records in ESE format for batch processing

(Figure 24), or can specify the values of the title and description fields of a “dummy”

ASSETS Ingestion Services – 2nd release Page 68 D2.1.3 V1.3

custom-made record, in order to quickly check the output generated by a model.

Figure 24 Selection of an XML file for enrichment

When processing a file, the output window gives feedback on the progress of the process

(Figure 25).

The enriched metadata records are saved in the same directory of the source file, with a

“enrichedClassification.” prefix. In the example, the output of the enrichment process of the

“ina_10_ESE.xml” file is saved in the “enrichedClassification .ina_10_ESE.xml”. Since the

input and the output files differ only for the additional information added by the metadata

classification process, the output file can be used as input to another enrichment process, or

as a direct substitute of the input file in the ingestion process.

ASSETS Ingestion Services – 2nd release Page 69 D2.1.3 V1.3

Figure 25 Enrichment of an XML file

When applied to a custom-made metadata record, the output window shows a list of the

classes assigned to the metadata record (Figure 26).

A user can simultaneously send more than one train and/or enrichment requests, since the

service is designed to support concurrent requests. The only issue is that the feedback from

the various requests will be mixed when printed in the output window.

ASSETS Ingestion Services – 2nd release Page 70 D2.1.3 V1.3

Figure 26 Enrichment of a custom-made metadata record

5.3 Ingestion Workflow GUI

The GUI for the ingestion workflow management service is implemented as an extension of

the UIM- Controlpanel. This provides a user friendly interface for management of

enrichment related activities, which are:

• training (learning) of enrichment models,

• testing the enrichment models

• execution of knowledge extraction tasks,

• execution of metadata classification tasks.

In the following chapters, we present some screenshots that show how the functionalities

listed above have been implemented and the control elements available for user

interaction.

5.3.1 Enrichment model learning panel

The panel used for creation and management of the enrichment models offers the

possibility to run the following scenarios: create new models, visualize the existing models,

ASSETS Ingestion Services – 2nd release Page 71 D2.1.3 V1.3

verify the learning status and delete an existing model (See Figure 27)

Figure 27 Enrichment model learning screen

To create a new enrichment model, the user must provide a file containing the training set

defined according to the requirements specified in Sections 5.2.1 and 5.1.1, respectively.

The input fields required for this operation (training set file, model type, description) are

marked with red colour in Figure 27. By pressing the “Start Model Learning” button, the

training file will be submitted to the server and the process of learning the enrichment

model will be started. The status of the model learning will be displayed in the

corresponding field. The model learning operation could take some time, depending on the

size of the training set. During the learning operation, the panel will display the status

RUNNING for the current model. The client is not notified automatically about the

finalization of the learning operation, but the user is able to check if the new model has

been created by refreshing the model list (i.e. press the “Refresh model list” button).

The status of the existing models can be verified by providing the id of the mode in the

Model Id field and pressing the “Check Status” button. These controls are marked with the

blue colour in Figure 27. The model Id is displayed in the first column of the model list table.

The same functionality can be used to verify if the model learning was completed or not.

At the bottom of the screen, the list of the existing models is displayed. The deletion of an

existing model can be performed by selecting the required model within the model list table

and pressing the “Delete Selected Model” button (marked with green colour).

ASSETS Ingestion Services – 2nd release Page 72 D2.1.3 V1.3

5.3.2 Test enrichment panel

The enrichment models created at the end of the process described in the previous section

can be used to enrich metadata collections available in ESE format. Anyway, this is a time

consuming activity and the librarians using these services would need to test them before

performing the enrichment of large collections. They might also need to test if the system

was able to learn the models for the given training set. The test enrichment panel was

created especially for supporting this kind of tasks (see Figure 28). It allows the user to

select a model and to use it for improving the description of a selected item. Differently

from the collection enrichment panels (knowledge extraction, metadata classification), this

panel retrieves the objects from the ASSETS servers and not from a metadata file (because

the invocation of the search object functionality is required to support this task).

The process of testing the enrichment consists of 3 steps:

• Select enrichment model. The enrichment model combo box displays all

enrichment models available in the system, and the user has to select one model for

testing it. See Section 5.3.1 for details on model learning task.

• Select object for enrichment. The user has the possibility to select an item for

enrichment by browsing items in a given collection or by using the advanced search

functionality. For object browsing, a collection available on the ASSETS server must

be selected and the items will be retrieved by pressing the “Get Objects” button

(see controls in red box). Alternatively, the user might search for items of a given

data provider by providing a free text query, selecting the index fields to search for

and pressing the “Search Objects” button (see controls in the blue box). The objects

retrieved from the server will be displayed in the overview table, where basic

information for the item identification is displayed (i.e. title, language, creator, year,

uri). The item used for enrichment will be selected by clicking the corresponding

row in the object table.

• Perform enrichment & check results. The enrichment is performed on the server

after pressing the “Enrich Object” button and the result is displayed in the

enrichment panel (see Figure 29). The knowledge extraction enrichment indicates

the type of information inferred by the model, the text and the context in which this

concept was detected (see the green box). The testing of the enrichment models

should be performed by a user that is familiar with both the collections objects and

the content of the training set. It is not guaranteed that an possible enrichment will

be proposed for each collection object.

ASSETS Ingestion Services – 2nd release Page 73 D2.1.3 V1.3

Figure 28 Test enrichment screen – object selection

ASSETS Ingestion Services – 2nd release Page 74 D2.1.3 V1.3

Figure 29 Test enrichment screen – enrichment result

5.3.3 Knowledge extraction screen

The goal of the knowledge extraction service is to enhance the description of the collection

objects by identifying concepts in the free text descriptions that can be linked to external

resources like Thesauri or Wiki pages. This is quite a time consuming task given the amount

of metadata available and the number of concepts available in the free text descriptions.

Given the fact that the objects available in the collection are semantically related to each

other, it is very alike that an enrichment model will be appropriate for processing all objects

in a collection.

The knowledge extraction process consists of the execution of the following steps:

• Upload metadata collection. The whole knowledge extraction processing is

performed on the ASSETS server; therefore, uploading the collection files to the

server is a prerequisite for the execution of the enrichment process. This is

accomplished in the GUI by providing a collection file and pressing the “Upload File“

button (see Figure 30). The system does not allow uploading a metadata file two

times on the server, but it allows performing the enrichment on the same collection

files anytime it is needed.

Figure 30 Knowledge extraction screen – enrichment invocation

• Knowledge extraction. The metadata files available on the server are displayed in

the Collection file combo box and can be used to perform the enrichment by

selecting a suited enrichment model (only knowledge extraction models are

displayed in the combo box) and pressing the “Enrich File” button. The user will be

notified that the enrichment process has started and it may take several minutes

until it will be finished. A second notification will appear when the enrichment is

completed and a panel is displayed with the URLs available for downloading the

enriched files (see Figure 31)

ASSETS Ingestion Services – 2nd release Page 75 D2.1.3 V1.3

Figure 31 Knowledge extraction screen – enrichment results

5.3.4 Metadata classification screen

The metadata classification process is very similar to the knowledge extraction one (see

5.3.3). The same steps needs to be performed, but a different type of enrichment is applied

(i.e. only classification models are available in this panel) and the result of the enrichment

process will be available in a different ESE field (See also results presented in Section 5.3.2).

Similar to knowledge extraction, the whole processing is performed on the server and the

results are available for download as an xml file. The user needs to upload the metadata file

(by using the “Upload File” button) on the server prior to performing the classification (to be

launched by using the “Enrich File” button). The enrichment process can take a few minutes

to be completed, but this process is typically performed faster that the knowledge

extraction. The metadata classification screenshot is presented in Figure 32.

ASSETS Ingestion Services – 2nd release Page 76 D2.1.3 V1.3

Figure 32 Metadata classification screen

ASSETS Ingestion Services – 2nd release Page 77 D2.1.3 V1.3

6. Evaluation of the services

Regarding the accuracy of the automatic enrichment functionalities provided by the

services, an evaluation has been conducted and this section reports the evaluation results.

The evaluation uses datasets provided by the content providers of the ASSETS project and

also from other Europeana content providers. Every dataset is composed by metadata

records in which the information that is expected to be generated by the enrichment

process is actually added to each metadata record by a human expert. The human-assigned

values are used in the experiments for two purposes, as training data, or as test data, i.e.,

data with human assigned annotation are kept hidden to the automatic process and then

compared to its outcome to determine the accuracy of the automatic process.

Whether a metadata record is used as training data or as test data depends on the adopted

experimental protocols. The evaluation is based on two of the most common experimental

protocols used in scientific literature. The choice of which protocol to use in a specific case

depends on the dataset size.

For relatively small datasets (e.g., less than 1,000 metadata records), the adopted

experimental protocol is leave-one-out validation. For a dataset of n metadata records, this

protocol consists of running n training experiments using n-1 metadata records as the

training set, and then to apply the learned classification/extraction model to the held-out

record. The classification/extraction responses for each metadata records are collected and

then compared with the original ones in order to measure the accuracy.

For larger datasets, the adopted experimental protocol is k-fold cross validation. This

protocol consists of splitting the dataset in k equally sized parts, and running k training

experiments in which k-1 parts of the data set are used as training set and the held out part

as test set. The classification/extraction responses for each part are collected and then

compared with the original ones in order to measure the accuracy.

As evaluation measure, we have adopted the F1 measure for both the classification and

extraction tasks. The F1 measure (introduced in Section 2) is the standard evaluation

measure in the domain of automatic text categorization and information extraction. We

report here two usual versions of the measure: micro-averaged (F1
μ
) and macro-averaged

(F1
M

) already described in Section 2.

6.1 Knowledge extraction service

For the knowledge extraction service we have run experiments on the following datasets:

� INA: a collection of 10000 metadata records describing television recordings. The

metadata records language is French, and the annotated concepts are Person,

Organisation, and Location. Such a large number of records was available because

the content provider had been already annotated this concepts in the metadata

records before the ASSETS project.

� Albeniz: a collection of 75 metadata records describing musical recordings. The

metadata records language is Spanish, and the annotated concepts are Person,

Organisation, Location, Musical composition, and Award.

ASSETS Ingestion Services – 2nd release Page 78 D2.1.3 V1.3

� DW: a collection of 268 metadata records describing audio and video recording of

event reports/documentaries. The metadata records language is English, and the

annotated concepts are Person, Organisation, and Location.

We have received samples of metadata records from other ASSETS partners, but any of

those samples contained less than 30 records. With such a small number of records is not

suitable to perform a statistically relevant evaluation.

Table 1 shows the summary of the results obtained from the various experiments. We have

selected various subsets within INA dataset to show how F1 varies with respect to the

training set size. The Albeniz collection obtained similar F1 values with respect to the INA

dataset of similar size. The DW collection, though with a smaller training set size than INA,

obtains very good results.

After a manual inspection of the data, we have found that INA dataset in many cases suffers

of partially annotation problem (e.g., only the last name of a person is annotated), while the

DW dataset is almost free from this kind of errors, and very accurate.

Considering the results obtained on the various training sets sizes on the INA dataset and

the high accuracy obtained by the higher quality DW, we can recommend a minimum

training set size of 200-500 records, depending on the expected quality of the annotation.

Provider Dataset

description

Concepts Number of

metadata

records

Experimental

protocol

F1
μ

F1
M

INA Collection of

television

recordings

Person,

Organisation,

Location

10000 10-fold cross

validation

.735 .638

INA Collection of

television

recordings

Person,

Organisation,

Location

5000 10-fold cross

validation

.706 .602

INA Collection of

television

recordings

Person,

Organisation,

Location

1000 10-fold cross

validation

.680 .560

INA Collection of

television

recordings

Person,

Organisation,

Location

500 10-fold cross

validation

.540 .461

INA Collection of

television

recordings

Person,

Organisation,

Location

100 leave-one-out .440 .232

INA Collection of

television

recordings

Person,

Organisation,

Location

10 leave-one-out .121 .065

ASSETS Ingestion Services – 2nd release Page 79 D2.1.3 V1.3

Albeniz Collection of

musical

recordings

Person,

Organisation,

Location, Musical

composition,

Awards

75 leave-one-out .466 .182

DW Collection of

video and audio

recordings

Person,

Organisation,

Location

268 leave-one-out .738 .690

Table 1: Results of experiments with the knowledge extraction service

6.2 Metadata classification service

For the metadata classification service we have run experiments on the following datasets:

� INA: a collection of 10000 metadata records describing television recordings. The

metadata records language is French, and the classification taxonomy is a set of 48

thematic areas (e.g. “Humour”, “Musique”). Such a large number of records was

available because the content provider had already been classified its metadata

records before the ASSETS project.

� Liberis: a collection of 6104 metadata records in Greek. Records are classified using

a taxonomy with 6 thematic classes.

� ANSC: a collection of 15559 metadata records in Italian, describing audio/musical

recordings. The classification taxonomy is composed of 522 genre-related classes

(e.g., “Danze”, “Canto narrativo”, “Rito”, “Ninna nanna”).

� Albeniz: a collection of 75 metadata records describing musical recordings. The

metadata records language is Spanish, and they are classified under 7 thematic

classes.

� HASC: a collection of 1665 metadata records in Greek. Records describe artefacts,

which are classified using a taxonomy with 32 classes (e.g., “Οχήματα - Επιβατικά

αυτοκίνητα”: “vehicles – automobiles”).

� FLM: a collection of 786 metadata records in Italian. Records describe industrial

artefacts and are classified using a taxonomy with 4 classes.

� CVCE: a collection of 17463 metadata records describing various media content

(audio, text, image, video), with title and description expressed in multiple

languages (English, French, German). They are linked to 1328 entries of the Eurovoc

thesaurus, which is used as the classification schema.

Table 2 shows the summary of the results obtained from the various experiments.

Also for the classification service the experiments with different-sized training sets on the

INA collection show that 500-1000 metadata records is a good lower limit for the training

set size. Experiments on the other datasets also indicate that, when sizing the training set,

the user has to take into account the number of classes that compose the taxonomy: the

ASSETS Ingestion Services – 2nd release Page 80 D2.1.3 V1.3

larger the taxonomy the larger should be the training set.

One relevant fact is that distribution of metadata records among classes usually follow a

power law, with few classes with a large number of records assigned and many classes with

just a few metadata records assigned. This effect is more evident when there are a large

number of categories, with many of them represented by very few training examples.

The ANSC collection, for example, obtains a very low F1
M

 value, though it has many training

examples, because about 200 classes out of 522 have less than 100 examples. On the

contrary, the Albeniz collection, though very small, obtains a very high F1
M

 value because its

7 classes are almost uniformly distributed in the training set.

On the CVCE dataset we scored average quality results, which is however a positive results

given the large number of classes involved.

Provider Number of

classes

Number of

metadata records

Experimental

protocol

F1
μ

F1
M

INA 48 10000 10-fold cross

validation

.647 .300

INA 48 1000 10-fold cross

validation

.568 .240

INA 48 500 10-fold cross

validation

.430 .180

INA 48 100 leave-one-out .231 .118

Liberis 6 6104 10-fold cross

validation

.667 .343

ANSC 522 15559 10-fold cross

validation

.465 .130

Albeniz 7 75 leave-one-out .842 .839

HASC 32 1665 10-fold cross

validation

.424 .144

FLM 4 786 leave-one-out .993 .745

CVCE 1378 17463 10-fold cross

validation

.592 .286

Table 2: Results of experiments with the metadat classification service on collections

provided by ASSETS partners.

For the classification service, we have also been able to run evaluation experiments on some

of the collections that are already part of Europeana, since some of them contained a

consistent use of the dc:subject field to identify the topic of the content described by each

metadata record using a controlled number of labels.

ASSETS Ingestion Services – 2nd release Page 81 D2.1.3 V1.3

Results of this evaluation are reported in Table 3. In these cases all the collections have

obtained good F1
μ
 values but low F1

M
 values. After a manual inspection of the data, we

motivate it by the fact that sometimes the dc:subject field contains spurious values related

to other fields, e.g., the name of the author, and these values are not consistently assigned

to records, resulting in training a classifier only for some classes with very poor training

data.

Collection name Taxonomy

description

Numbe

r of

classes

Number of

metadata

records

Experimental

protocol

F1
μ

F1
M

DeutscheFotothek-1 Photos/

Images

1999 1097321 10-fold cross

validation

.632 .132

DeutscheFotothek-2 Photos/

Images

220 529482 10-fold cross

validation

.744 .170

landesarchiv Photos/

Images

2442 10407 10-fold cross

validation

.292 .191

Table 3: Results of experiments with the metadata classification service on

collections that are already part of Europeana.

ASSETS Ingestion Services – 2nd release Page 82 D2.1.3 V1.3

7. Concluding Remarks

The knowledge extraction and classification services, encapsulated into the ingestion

workflow management, enable users to leverage on machine learning technique to

automatically enrich the description of their collection objects.

The services described in this deliverable will support the enrichment processes to be used

in application scenarios in which a user is willing to add well formatted structures to the

information implicitly contained in free texts Given a large collection, a user without access

to the ingestion services has no alternative but to manually process the entire collection. By

using the ingestion services, the user can benefit the manual work done on a part of the

collection to automatically process the rest of the collection.

We have run scientific experiments in order to determine the quality of the enrichment

automatically performed by the services, finding that training set of about 500 metadata

records can already produce quite an accurate output. Moreover, even in the case the

output of the services is required to pass a stage of human inspection, the task of validating

the automatic decisions taken by the services is much less demanding than performing

manual annotation from scratch.

Finally, the outcome of the “evaluation of the ASSETS professional services” activity,

performed by ASSETS content provider in order to enrich their metadata, will give further

insight on the pros and cons of using automatic annotation tools in the ingestion workflow.

ASSETS Ingestion Services – 2nd release Page 83 D2.1.3 V1.3

8. Appendix A

8.1 Traning set XSD schema for the knowledge extraction service

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://www.assets4europeana.eu/ExtractionSchema"

 targetNamespace="http://www.assets4europeana.eu/ExtractionSchema"

 elementFormDefault="qualified"

xmlns:ese="http://www.europeana.eu/schemas/ese/">

 <xs:import namespace="http://www.europeana.eu/schemas/ese/"

 schemaLocation="http://www.europeana.eu/schemas/ese/ESE-V3.3.xsd" />

 <xs:element name="extractionTrainingSet"

type="tns:extractionTrainingSetComplexType">

 </xs:element>

 <xs:complexType name="extractionTrainingSetComplexType">

 <xs:sequence>

 <xs:element name="extractionTask" type="tns:extractionTaskComplexType">

 </xs:element>

 <xs:element name="examples" type="tns:examplesComplexType">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="extractionTaskComplexType">

 <xs:sequence>

 <xs:element name="sourceFieldName" type="xs:string"></xs:element>

 <xs:element name="conceptSet" type="tns:conceptSetComplexType">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="conceptSetComplexType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"></xs:element>

 <xs:element name="URI" type="xs:anyURI" minOccurs="0"></xs:element>

 <xs:element name="concepts" type="tns:conceptsComplexType"></xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="conceptsComplexType">

 <xs:sequence>

 <xs:element name="concept" type="tns:conceptComplexType"

 maxOccurs="unbounded">

ASSETS Ingestion Services – 2nd release Page 84 D2.1.3 V1.3

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="conceptComplexType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"></xs:element>

 <xs:element name="URI" type="xs:anyURI" minOccurs="0"></xs:element>

 <xs:element name="targetField" type="xs:string" minOccurs="0"></xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="examplesComplexType">

 <xs:sequence>

 <xs:element name="example" type="tns:exampleComplexType"

 maxOccurs="unbounded">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="exampleComplexType">

 <xs:sequence>

 <xs:element name="record" type="tns:recordComplexType">

 </xs:element>

 <xs:element name="extractedConcept" type="tns:extractedConceptComplexType"

 maxOccurs="unbounded"></xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="extractedConceptComplexType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"></xs:element>

 <xs:element name="extractedText" type="xs:string"></xs:element>

 <xs:element name="position" minOccurs="0">

 <xs:complexType>

 <xs:choice>

 <xs:element name="context" type="xs:string"></xs:element>

 <xs:sequence>

 <xs:element name="startCharacterPosition"

type="xs:positiveInteger"></xs:element>

 <xs:element name="endCharacterPosition"

type="xs:positiveInteger"></xs:element>

 </xs:sequence>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 <xs:element name="URI" type="xs:anyURI" minOccurs="0"></xs:element>

 </xs:sequence>

ASSETS Ingestion Services – 2nd release Page 85 D2.1.3 V1.3

 </xs:complexType>

 <xs:complexType name="recordComplexType">

 <xs:sequence>

 <xs:element ref="ese:record" />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

8.2 Training set XML example for the knowledge extraction service

<?xml version="1.0" encoding="UTF-8"?>

<extractionTrainingSet xmlns="http://www.example.org/ExtractionSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.example.org/ExtractionSchema ExtractionSchema.xsd

">

 <!-- This section defines the extraction task performed on the records -->

 <extractionTask>

 <!-- This is the name of the field of the records from which information has to be

extracted -->

 <sourceFieldName>description</sourceFieldName>

 <conceptSet>

 <!-- This is a descriptive name for the extraction task -->

 <name>NER for persons, organizations and locations</name>

 <!-- Optional pointer to a resource that describes the concept set -->

 <URI>http://en.wikipedia.org/wiki/Named_entity_recognition</URI>

 <concepts>

 <concept>

 <!-- Name of the concept to be extracted -->

 <name>person</name>

 <!-- Optional pointer to a resource describing the concept -->

 <URI>http://en.wikipedia.org/wiki/Person</URI>

 <!-- Optional name of the target field in the record that has to be filled with

extracted information -->

 <targetField>extractedPerson</targetField>

 </concept>

 <concept>

 <name>organization</name>

 <URI>http://en.wikipedia.org/wiki/Organization</URI>

 <targetField>extractedOrganization</targetField>

 </concept>

 <concept>

 <name>location</name>

 <URI>http://en.wikipedia.org/wiki/Place_(geography)</URI>

 <targetField>extractedLocation</targetField>

 </concept>

 </concepts>

ASSETS Ingestion Services – 2nd release Page 86 D2.1.3 V1.3

 </conceptSet>

 </extractionTask>

 <examples>

 <example>

 <record>

 <europeanaRecord>

 <title>Lamp</title>

 <description>Thomas Edison invented the filament lamp in America at almost the

same time as Joseph Swan did in England. He produced this type of lamp in 1880. This

particular bulb comes from Pullar's Dye Works in Perth, one of the first buildings in

Australia to install Edison lights.</description>

 <source>Tyne and Wear Imagine</source>

 <provider>CultureGrid ; Uk</provider>

<identifier>http://www.imagine.org.uk/details/index.php?id=TWCMS:B5141a</identifie

r>

 <subject> inventors and innovators; people</subject>

 <type>Image</type>

 </europeanaRecord>

 </record>

 <extractedConcept>

 <name>person</name>

 <extractedText>Thomas Edison</extractedText>

 <!-- A position specification is required when multiple instances of the extracted text

appear in the field with different role. In this case no position is required.-->

 <!-- In the case a position is necessary, it can be expressed by copying the extracted

text with enough surrounding text in order to make it uniquely identifiable. See examples

in following concept extractions.-->

 <URI>http://viaf.org/viaf/66552944/#Edison, Thomas A. (Thomas Alva), 1847-

1931</URI>

 </extractedConcept>

 <extractedConcept>

 <name>location</name>

 <extractedText>America</extractedText>

 <!-- Also for this case the position is not required. It is just reported as an example. --

>

 <position>

 <context>lamp in America at almost</context>

 </position>

 <URI>http://www.geonames.org/maps/google_39.76_-98.5.html</URI>

 </extractedConcept>

 <extractedConcept>

 <name>person</name>

 <extractedText>Joseph Swan</extractedText>

 <!-- Position can also be expressed as the offset in number of characters from the

beginning of the text in the field. -->

 <position>

 <startCharacterPosition>80</startCharacterPosition>

ASSETS Ingestion Services – 2nd release Page 87 D2.1.3 V1.3

 <endCharacterPosition>91</endCharacterPosition>

 </position>

 <URI>http://viaf.org/viaf/15100261/#Swan, Joseph Wilson, 1828-1914</URI>

 </extractedConcept>

 <extractedConcept>

 <name>location</name>

 <extractedText>England</extractedText>

 <URI>http://www.geonames.org/2635167/united-kingdom-of-great-britain-and-

northern-ireland.html</URI>

 </extractedConcept>

 <extractedConcept>

 <name>organization</name>

 <extractedText>Pullar's Dye Works</extractedText>

<URI>http://canmore.rcahms.gov.uk/en/site/127331/details/perth+pullar+s+dyeworks/

</URI>

 </extractedConcept>

 <extractedConcept>

 <name>location</name>

 <extractedText>Perth</extractedText>

 <URI>http://www.geonames.org/2063523/perth.html</URI>

 </extractedConcept>

 <extractedConcept>

 <name>location</name>

 <extractedText>Australia</extractedText>

 <URI>http://www.geonames.org/2077456/commonwealth-of-australia.html</URI>

 </extractedConcept>

 <extractedConcept>

 <name>person</name>

 <extractedText>Edison</extractedText>

 <position>

 <context>to install Edison lights</context>

 </position>

 <URI>http://viaf.org/viaf/66552944/#Edison, Thomas A. (Thomas Alva), 1847-

1931</URI>

 </extractedConcept>

 </example>

 </examples>

</extractionTrainingSet>

ASSETS Ingestion Services – 2nd release Page 88 D2.1.3 V1.3

9. Appendix B

9.1 Traning set XSD schema for the metadata classification service

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://www.assets4europeana.eu/ClassificationSchema"

 targetNamespace="http://www.assets4europeana.eu/ClassificationSchema"

 elementFormDefault="qualified"

xmlns:ese="http://www.europeana.eu/schemas/ese/">

 <xs:import namespace="http://www.europeana.eu/schemas/ese/"

 schemaLocation="http://www.europeana.eu/schemas/ese/ESE-V3.3.xsd" />

 <xs:element name="classificationTrainingSet"

type="tns:classificationTrainingSetComplexType">

 </xs:element>

 <xs:complexType name="classificationTrainingSetComplexType">

 <xs:sequence>

 <xs:element name="classificationSchema"

type="tns:classificationSchemaComplexType">

 </xs:element>

 <xs:element name="examples" type="tns:examplesComplexType">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="classificationSchemaComplexType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"></xs:element>

 <xs:element minOccurs="0" name="URI" type="xs:anyURI">

 </xs:element>

 <xs:element name="type" default="multiLabel">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="multiLabel" />

 <xs:enumeration value="singleLabel" />

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="classes" type="tns:classesComplexType">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="examplesComplexType">

 <xs:sequence>

ASSETS Ingestion Services – 2nd release Page 89 D2.1.3 V1.3

 <xs:element name="example" type="tns:exampleComplexType"

 maxOccurs="unbounded">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="classesComplexType">

 <xs:sequence>

 <xs:element maxOccurs="unbounded" name="class"

 type="tns:classComplexType">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="classComplexType">

 <xs:sequence>

 <xs:element name="name" type="xs:string"></xs:element>

 <xs:element minOccurs="0" name="URI" type="xs:anyURI">

 </xs:element>

 <xs:element minOccurs="0" name="parentClassName" type="xs:string">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="exampleComplexType">

 <xs:sequence>

 <xs:element name="record" type="tns:recordComplexType">

 </xs:element>

 <xs:element name="assignedClass" type="xs:string"

 minOccurs="0" maxOccurs="unbounded"></xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="recordComplexType">

 <xs:sequence>

 <xs:element ref="ese:record" />

 </xs:sequence>

 </xs:complexType>

</xs:schema>

9.2 Training set XML example for the metadata classification service

<?xml version="1.0" encoding="UTF-8"?>

<classificationTrainingSet xmlns="http://www.example.org/ClassificationSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.example.org/ClassificationSchema

ClassificationSchema.xsd ">

ASSETS Ingestion Services – 2nd release Page 90 D2.1.3 V1.3

 <!-- This section defines the -->

 <classificationSchema>

 <!-- A meaningful name for the classification schema -->

 <name>a simple music genre classificiation schema</name>

 <!-- Optional URI pointing to a description of the classification schema -->

 <URI>http://en.wikipedia.org/wiki/Music_genre</URI>

 <!-- Type of classification schema

 multiLabel: each record can be assigned to zero, one, or more than one class

 singleLabel: each record has to be assigned to one and only one class

 -->

 <type>singleLabel</type>

 <!-- List of classes -->

 <classes>

 <!-- Definition of a class -->

 <class>

 <!-- Class name -->

 <name>classical</name>

 <!-- Optional URI describing the class -->

 <URI>http://en.wikipedia.org/wiki/Classical_music</URI>

 </class>

 <class>

 <name>baroque</name>

 <URI>http://en.wikipedia.org/wiki/Baroque_music</URI>

 <!-- The classification schema could be hierachical. In this case "baroque" is a more

specific definition of a classical music genre. -->

 <!-- If a record is assigned to baroque it is implicitly also an example of classical

music. -->

 <!-- If a record is assigned to classical it means that, though the record refers to

classical music, it does not belong to anyone of the more specific classes. -->

 <parentClassName>classical</parentClassName>

 </class>

 <class>

 <name>modern</name>

 <URI>http://en.wikipedia.org/wiki/20th-century_classical_music</URI>

 <parentClassName>classical</parentClassName>

 </class>

 <class>

 <name>romantic</name>

 <URI>http://en.wikipedia.org/wiki/Romantic_music</URI>

 <parentClassName>classical</parentClassName>

 </class>

 <class>

 <name>jazz</name>

 <URI>http://en.wikipedia.org/wiki/Jazz</URI>

 </class>

 <class>

 <name>bebop</name>

 <URI>http://en.wikipedia.org/wiki/Bebop</URI>

ASSETS Ingestion Services – 2nd release Page 91 D2.1.3 V1.3

 <parentClassName>jazz</parentClassName>

 </class>

 <class>

 <name>funky</name>

 <URI>http://en.wikipedia.org/wiki/Funk</URI>

 <parentClassName>jazz</parentClassName>

 </class>

 <class>

 <name>swing</name>

 <URI>http://en.wikipedia.org/wiki/Swing_music</URI>

 <parentClassName>jazz</parentClassName>

 </class>

 <class>

 <name>popular</name>

 <URI>http://en.wikipedia.org/wiki/Popular_music</URI>

 </class>

 <class>

 <name>country</name>

 <URI>http://en.wikipedia.org/wiki/Country_music</URI>

 <parentClassName>popular</parentClassName>

 </class>

 <class>

 <name>punk</name>

 <URI>http://en.wikipedia.org/wiki/Punk_rock</URI>

 <parentClassName>popular</parentClassName>

 </class>

 <class>

 <name>rap</name>

 <URI>http://en.wikipedia.org/wiki/Hip_hop_music</URI>

 <parentClassName>popular</parentClassName>

 </class>

 </classes>

 </classificationSchema>

 <examples>

 <example>

 <record>

 <recording>

 <title>The Marriage of Figaro</title>

 <author>Wolfgang Amadeus Mozart</author>

 <year>1943</year>

 <director>Paul Breisach</director>

 <orchestra>Metropolitan Opera Orchestra</orchestra>

 <location>New York</location>

 </recording>

 </record>

 <assignedClass>classical</assignedClass>

 </example>

 <example>

ASSETS Ingestion Services – 2nd release Page 92 D2.1.3 V1.3

 <record>

 <recording>

 <title> Brandenburg Concerto No. 1 - 1</title>

 <author>Johann Sebastian Bach</author>

 <orchestra>The Busch Chamber Players</orchestra>

 <URI>http://en.wikipedia.org/wiki/File:Bach_-_Brandenburg_Concerto_No._1_-

_1._Allegro.ogg</URI>

 </recording>

 </record>

 <assignedClass>baroque</assignedClass>

 </example>

 <example>

 <record>

 <recording>

 <title>Für Elise</title>

 <title>Bagatelle No. 25 in A minor</title>

 <author>Ludwig van Beethoven</author>

 <year>1867</year>

 </recording>

 </record>

 <assignedClass>romantic</assignedClass>

 </example>

 <example>

 <record>

 <recording>

 <title>Salt Peanuts</title>

 <composed>1942</composed>

 <year>1947</year>

 <author>Dizzy Gillespie</author>

 <description>Dizzy played for Lucky Millinder's band in the early '40s. It was a riff

this band played, after a Dizzy solo in the tune "Little John Special", that Dizzy developed

into his tune "Salt Peanuts".</description>

 <URI>http://www.youtube.com/watch?v=kOmA8LOw258</URI>

 </recording>

 </record>

 <assignedClass>bebop</assignedClass>

 </example>

 <example>

 <record>

 <recording>

 <title>Gotta Lotta Love</title>

 <author>Tracy Marrow</author>

 <author>Ice-T</author>

 <album>Home invasion</album>

 <year>1993</year>

 </recording>

 </record>

 <assignedClass>rap</assignedClass>

ASSETS Ingestion Services – 2nd release Page 93 D2.1.3 V1.3

 </example>

 <example>

 <record>

 <recording>

 <title>The river unbroken</title>

 <author>Dolly Rebecca Parton</author>

 <year>1987</year>

 <album>Rainbox</album>

 <label>CBS</label>

 <producer>Steve "Gold-E" Goldstein</producer>

 </recording>

 </record>

 <assignedClass>country</assignedClass>

 </example>

 </examples>

</classificationTrainingSet>

