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Executive Summary 

This document
1
 contains the revised and final specification, technical documentation, and 

user documentation for the services developed within tasks “T2.1.2 Knowledge extraction”, 

“T2.1.3 Metadata classification”, both of which are under the responsibility of CNR, and task 

“T2.1.4 Ingestion workflow management and Integration”, which is under the responsibility 

of AIT. 

The enrichment services are based on a supervised learning approach, i.e., a learning 

algorithm is trained on examples of manually annotated records; the learning process 

generates an enrichment model, which is then used to perform the automatic enrichment. 

After providing a brief introduction on the Assets enrichment services (Section 1), the 

scientific background on this process is presented (Section 2). 

The enrichment modules are implemented as Web-Services being exposed for remote 

invocation through their rest Interface. The ingestion workflow service connects to them 

through their client interfaces and provides the users with a web interface to perform the 

training and automatic enrichment of metadata collections. The software requirements and 

the technical implementation details are reported in Sections 3 and 4, while Section 5 

contains the user manual. Section 6 reports the experimental results  aimed at determining 

the quality of the automatic enrichment process and the guidelines  used for the creation 

training sets, as well. 

                                                             
1 Part of the content of this deliverable already appears in Deliverable 2.0.4 “The ASSET APIs” and in Deliverable 2.1.1 “Specification of 

Ingestion Services' delivered at M12.  
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1. Introduction 

The objective of WP2.1 is to implement a set of services that provide automatic enrichment 

of metadata records to the ASSETS platform. 

The developed services allow ASSETS professional users to: 

(i) automatically identify and annotate, within metadata records, pieces of text 

that denote relevant entities (T2.1.2 “knowledge extraction from metadata 

records”) 

(ii) automatically classify the metadata records according to a set of categories, 

possibly organized into a taxonomy, relevant for the domain (T2.1.3 “metadata 

classification”).  

The invocation of the services is integrated into the ingestion management tools developed 

in collaboration with Europeana and “The European Library” (TEL). The mentioned tools will 

support the back office processes in both these institutions (T2.1.4 “ingestion workflow 

management”). 

These tasks are made complex by the presence of different content providers, within the 

ASSETS consortium and within Europeana, which have been concerned with different types 

of content (i.e. text, image, audio, video) and different languages (i.e. there are 27 

languages used in Europeana by now). There is a need thus to implement the above-

mentioned services in a way that addresses this diversity of content providers, content 

types, and languages, and in a way that possibly allows new content providers, with new 

content types described by metadata expressed in new languages, to be also addressed with 

a minimum additional effort. 

As a consequence, the services have been developed according to a supervised learning 

methodology. Essentially, this means that a new content provider will be able to set up a 

system for enriching its own metadata by providing to the system a “training” set of 

enriched metadata records. The system would use these enriched metadata records as 

indications, or examples, of what enriching metadata records from this content provider 

means, and would then generate an “automatic enricher” of metadata records provided by 

this content provider. This mechanism allows to set up automatic metadata enrichers for 

any type of content provider, any type of content, and any language; of course, adequate 

training sets of manually enriched metadata records must be given as input. 

This supervised learning metaphor underlies all three services tackled within WP2.1. 

However, its algorithmic realization for the considered services is different, since the 

individual tasks are different in nature. For instance, T2.1.3 is a task that supports the 

enrichment of metadata records as a whole by classifying them and will be tackled via 

automatic text classification technologies. On the other hand, T2.1.2 is a task that supports 

the enrichment of metadata records not by annotating the full record, but by annotating 

individual sequences of words within the record. Therefore the knowledge extraction makes 

use of  automatic sequence learning (“information extraction”) technologies. 

The integration of the enrichment service execution in a unified workflow (UIM) is achieved 

web based technologies within the scope of T2.1.4. In this document, we will focus on the 

description of both the GUI interface. The UIM, as the technical infrastructure used for 



 

ASSETS Ingestion Services – 2nd release                           Page 3 D2.1.3 V1.3 

 

workflow execution and plug-in orchestration have been described in the deliverable D2.1.1 

SPECIFICATION OF INGESTION SERVICES. 

 

The rest of the document contains a brief scientific background to the machine learning 

method on which the services are based, the description of software requirements for the 

services, their technical specification, the user manual which describes the format for 

training data and how to use the test interface, and the evaluation of the quality of the 

services, based on objective cross-validation experiments. 
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2. Scientific background 

This section gives background information about the machine learning methods adopted for 

the implementation of the enrichment services. 

2.1 Knowledge Extraction from Metadata Records 

T.2.1.2 has to do with automatically annotating the text of which metadata records consist 

of, by tagging specific parts of this text according to a pre-specified set of  words that 

denote concepts of interest in the domain the metadata records and the corresponding 

context they refer to. This task is usually referred to as information extraction (IE) or 

knowledge extraction in the literature [Ben-Dov and Feldman, 2010, McCallum 2005, 

Sarawagi 2008]. In other words, the information extraction is the discipline concerned with 

the extraction of natural language expressions from free text, where these expressions 

instantiate concepts of interest in a given domain. If there are n different concepts of 

interest, information extraction is a bit like highlighting the text via n highlight markers of n 

different colours. For instance, given a corpus of job announcements, one might want to 

extract from each announcement the natural language expressions that describe the nature 

of the job, the promised annual salary, the job location, etc.  

Another very popular instance of IE is searching free text for named entities, i.e., names (or 

mentions) of persons, locations, geopolitical organizations, and so on [Nadeau and Sekine, 

2007]. Put yet another way, IE may be seen as the activity of populating a structured 

information repository (such as a relational database, where “job”, “annual salary”, “job 

location” are attributes) from an unstructured information source such as a corpus of free 

text. As such, IE is important for enriching digital libraries by making implicit semantics 

explicit, and is a prerequisite for concept normalization ( i.e., linking the mention of a 

concept to an entry of a controlled vocabulary so that different linguistic manifestations of 

the same concept link to the same controlled vocabulary entry). 

There are two main approaches to designing an IE system. The former is the rule- based 

approach, which consists of manually writing a set of rules which relate natural language 

patterns with the concepts to be extracted from the text. This approach, while potentially 

effective, is too costly, since it requires a lot of human effort for writing the rules, which 

must be jointly written by a domain expert and a natural language engineer. In T2.1.2 we 

followed the alternative approach, which is based on supervised machine learning.  

According to this approach, a general-purpose learning software learns to relate natural 

language patterns with the concepts to be instantiated, from a set of manually annotated 

free texts, i.e., texts in which the instances of the concepts of interest have been marked by 

a domain expert. The most important advantage of this approach is that the human effort 

required for annotating the texts needed for training the system is less  than the one 

needed for manually writing the extraction rules. After all, this is just a manifestation of the 

fact, well-known in the cognitive sciences, that defining a concept intensionally (i.e., 

specifying a set of rules for recognizing the instances of this concept – say, a set of rules for 

recognizing red objects) is cognitively much harder for a human that defining the same 

concept ostensively (i.e., pointing to a set of instances of the concept – say, pointing to a set 

of red objects). A consequence of the machine learning approach is that a system for 
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information extraction may be easily updated to reflect new needs. For example the 

addition of a new concept into the group of concepts to be identified, or the replacement of 

one concept set with a completely different one. While the rule-based approach would 

require in these cases the manual update of the extraction rules via the joint work of a 

knowledge engineer and a domain expert, the machine learning approach just requires the 

provision of new training examples annotated according to the new concepts of interest.  

In T2.1.2 this is extremely advantageous since the ASSETS consortium (and also the group of 

Europeana content providers) comprises a variety of content providers coming from 

libraries, museums, audio-visual archives, etc. They are owning different types of content 

(and thus likely requiring the annotation of text according to different concepts of interest) 

and describe it via metadata records formulated in different languages. In the rule-based 

approach this diversity would entail the need to tackle each combination of <content 

provider + type of content + language> individually, by manually writing rules for each such 

combination, while in the machine learning approach each such combination may be tackled 

by simply providing appropriate training examples. 

In the following sections we will first give a formal definition of information extraction and a 

brief description of “conditional random fields”, the supervised learning algorithm that we 

have adopted for T2.1.2. Conditional random fields have widely been studied, and are 

widely used in information extraction applications, ranging from named entity recognition 

[Zeng et al., 2009], to the analysis of medical reports [Esuli et al., 2011], to medical record 

anonymisation [Szarvas et al, 2007], and even word hyphenation [Trogkanis and Elkan, 

2010]. We will then give a detailed description of the evaluation protocol that we have 

followed in order to ascertain how accurately the system performs on the metadata records 

of the ASSETS and Europeana content providers.  

2.1.1 A formal definition of information extraction 

Let a text U = {t1 < s1 < ... < sn-1 < tn} consist of a sequence of tokens (i.e., word occurrences) 

t1, ..., tn and separators (i.e., sequences of blanks and punctuation symbols) s1, ..., sn-1, where 

”<” means “precedes in the text”. We use the term textual unit (or simply t-unit), with 

variables u1, u2, ..., to denote either a token or a separator. Let C={c1, ..., cm} be a predefined 

set of tags (aka labels, or classes), or tagset. Let A={11, ..., 1k, ..., m1, ..., mk} be an 

annotation for U, where a segment ij for U is a pair (stij,etij) composed of a start token stij  

U and an end token etij  U such that stij ≤ etij (“≤” obviously means “either precedes in the 

text or coincides with”). Here, the intended semantics is that, given segment ij=(stij ,etij)  

A, all t-units between stij and etij, extremes included, are tagged with tag ci. 

Given a universe of texts U and a universe of segments A, we define information 

extraction (IE) as the task of estimating an unknown target function Φ : U X C→ A, that 

defines how a text U  U ought to be annotated (according to a tagset C) by an annotation 

A   A. The result Φ(Φ): U X C→ A of this estimation is called a tagger. Consistently with 

most mathematical literature we use the caret symbol Φ() to indicate estimation. Note that 

the notion of IE we have defined allows a given t-unit to be tagged by more than one tag, 

and is thus dubbed multi-tag IE. The multi-tag nature of our definition essentially means 

that, given tagset C={c1, ..., cm}, we can split our original problem into m independent 

subproblems of estimating a target function Φi : U → Ai by means of a tagger Φ(Φi) : U → 

Ai, for any i  {1, ..., m}. Likewise, the annotations we will be concerned with from now on 
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will actually be c-annotations, i.e., sets of ci-segments of the form Ai ={i1, ..., ii}. Hereafter 

we will often drop the prefix ci- when the context makes it implicit.  

2.1.2 Conditional random fields 

As a learning algorithm we have used conditional random fields[Lafferty et al, 2001, Sutton 

and McCallum, 2007]. Conditional random fields are graphical models that model a 

conditional distribution p(y|x), in which the variable y=〈y1,..., ytΦ represents the labels to be 

predicted, and the variable x=〈x1,..., xtΦ represents the observed knowledge. In our case y 

are the tags to be assigned to the tokens and separators in the text, and x is the information 

about these tokens and separators that we will input to the system. 

Conditional random fields are often used in classification tasks in which the entities to be 

classified have highly dependent features (sequence labelling, IE, etc.). Conditional random 

fields differ from other graphical models, such as Hidden Markov Models, that use a joint 

probability distribution p(y,x) and therefore require to know the prior probability 

distribution p(x).  In conditional random fields the input variables x do not need to be 

represented, thus avoiding the non-trivial modelling of the prior probability distribution p(x) 

and allowing the use of rich and dependent features of the input.  

CRF++ is the implementation of linear-chain conditional random fields, that define the 

conditional probability of y given x as:          

( ) ( )







−∑ ∑ tttk

T

=t

K

=k
k x;y,yfθ

xZ
=θxyP 1

1 1

exp
1

:  

Where: Z(x) is a normalization factor and θ k is one of the K model parameter weights 

corresponding to a feature function k(yt-1,yt ; xt).  

Each feature function k describes the sequence x at position t with label yt observed with a 

transition from label yt-1 to yt.  

CRF++ allows defining feature functions k by using information about the token to be 

labelled and about the tokens around the token to be labelled. This is possible by defining 

the size of the window of tokens to be considered around the one to be labelled. The 

window can be composed by information belonging to tokens that precede the token to be 

labelled or belonging to tokens that follow the token to be labelled. Having a wide window 

is important in tasks that require identifying long annotated sequence of tokens.  For more 

details about conditional random fields see [Sutton and McCallum, 2007]. 

A conditional random field learner needs each t-unit either in a training document or in a 

test document to be represented in vectorial form. In this work we have used a set of 

features consisting of the original token as it appears in the text, its part of speech, and the 

relative lemma, plus information about capitalization, prefixes, suffixes and stemming. To 

give the learner more robustness over typographical and orthographical errors, we use as 

features: 

• the token lemma,  

• the token prefixes (the first character of the token, the first two, the first three, the 

first four)  

• the token suffixes (the last character of the token, the last two, the last three, the 
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last four),  

• the token stem,  

• and token capitalization information.  

With token capitalization we identify 4 types of capitalization: “all capital”, indicating that all 

the letters in the word are uppercased, “first letter capital”, indicating that just the first 

letter of the word is uppercased and the rest of the letters are all lowercased, “all lower”, 

indicating that none of the letters in the word are uppercased, and “mixed case”, indicating 

that there are some uppercased letters and some lowercased letters. We also include as a 

feature the part of speech of the token. 

As the evaluation measure we use the recently proposed token & separator F1 model [Esuli 

and Sebastiani, 2010]. According to this model, a tagger is evaluated according to the well-

known F1 measure on an event space consisting of all t-units in the text. In other words, 

each t-unit uk (rather than each segment, as in the traditional “segmentation F-score” 

model) counts as a true positive, true negative, false positive, or false negative for a given 

tag ci, depending on whether uk belongs to ci or not in the predicted annotation and in the 

true annotation. As argued by Esuli and Sebastiani [2010], this model has the advantage that 

it credits a system for partial success and it penalizes both overtagging and undertagging. 

As the well-known F1 metric combines the contributions of precision (π) and recall (ρ) and is 

defined as F1=
2 πρ
π+ρ

=
2TP
2TP+FP+FN , where TP, FP, and FN stand for the numbers of 

true positives, false positives, and false negatives, respectively. Note that F1 is undefined 

when TP=FP=FN =0; in this case we take F1 to equal 1, since the tagger has correctly tagged 

all t-units as negative. 

We compute F1 across the entire test set, i.e., we generate a single contingency table by 

putting together all t-units in the test set, irrespective of the text they belong to. We then 

compute both micro-averaged F1 (denoted by F1
μ
) and macro-averaged F1 (F1

M
). F1

μ
 is 

obtained by (i) computing the tag-specific values TPi, FPi and FNi, (ii) obtaining TP as the sum 

of the TPi’s (same for FP and FN), and then (iii) applying the F1=
2TP
2TP+FP+FN formula. 

F1
M

 is obtained by first computing the tag-specific F1  values and then averaging them across 

the cj ’s. 

An advantage of using F1 as the evaluation measure is that it is symmetric, i.e., its values do 

not change if one switches the roles of the human annotator and the automatic tagger. This 

means that F1 can also be used as a measure of agreement between any two 

annotators/taggers, regardless of whether they are human or machine, since it does not 

require one to specify who among the two is the “gold standard” against which the other 

needs to be checked. For this reason, in the following section we will use F1 both (a) to 

measure the agreement between our system and the human annotators, and (b) to 

measure the agreement between the two human annotators. This will allow us to judge in a 

direct way how far our system is from human performance. 

2.1.3 References 

Ben-Dov, M., Feldman, R.: Text Mining and Information Extraction. In Oded Maimon, Lior Rokach 

(Eds.): Data Mining and Knowledge Discovery Handbook, 2nd ed. Springer, 2010, pp. 809-835 



 

ASSETS Ingestion Services – 2nd release                           Page 8 D2.1.3 V1.3 

 

Esuli, A., Marcheggiani, D., Sebastiani, F.,: Information Extraction from Radiology Reports. Presented 
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Trogkanis, N., Elkan, C.: Conditional Random Fields for Word Hyphenation. Proceedings of the 48th 

Annual Meeting of the Association for Computational Linguistics, July 11-16, 2010, Uppsala, 

Sweden, 2010, pp. 366-374. 
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2.2 Automatic Classification of Metadata Records 

As part of their routine information management protocols, many organizations and 

content providers classify their content (or the metadata that describe these contents) 

according to a set of categories (or “classification scheme”) that effectively describe the 

domain this content is about. There is often the case that, unless the domain is trivial in 

nature, this classification scheme has a hierarchical structure, since a non-hierarchical, flat 

structure would be too clumsy to accommodate the high number of categories that describe 

the domain. We will indeed assume that content providers do structure their content 

according to a hierarchically shaped classification scheme. This assumption is non-

restrictive, since a flat classification scheme may also be seen as a hierarchical classification 

scheme consisting of only two levels, the root (level 0) and all the categories (level 1) 

appended to the root as children.  

The field of supervised learning that tackles the classification of textual items (as metadata 

records are) under hierarchically structured classification schemes is called hierarchical text 

categorization (HTC). Notwithstanding the fact that most large-sized classification schemes 

for text (e.g. the ACM Classification Scheme, the MESH thesaurus, the NASA thesaurus) 



 

ASSETS Ingestion Services – 2nd release                           Page 9 D2.1.3 V1.3 

 

indeed have a hierarchical structure, the attention of text classification (TC) researchers has 

mostly focused on algorithms for “flat” classification. These algorithms, once applied to a 

hierarchical classification problem, are not capable of taking advantage of the information 

inherent in the class hierarchy, and may thus be suboptimal, in terms of efficiency and/or 

effectiveness. On the contrary, many researchers have argued that by leveraging on the 

hierarchical structure of the classification scheme, heuristics of various kinds can be brought 

to bear that make the classifier more efficient and/or more effective. This is the reason why, 

for the purposes of T2.1.3, we have focused our attention on algorithms explicitly devised 

for HTC. 

An important intuition that underlies HTC algorithms is that by viewing classification as the 

identification of the paths that start from the root, funnel the document down to the 

subtrees where it belongs (in “Pachinko machine” style), entire other subtrees can be 

pruned from consideration. That is, when the classifier corresponding to an internal node 

outputs a negative response, the classifiers corresponding to its descendant nodes do  not 

need to be invoked any more, thus reducing the computational cost of classifier invocation 

exponentially [Chakrabarti et al. 1998; Koller and Sahami 1997].  

A second important intuition is that, by training a binary classifier for an internal node 

category on a well-selected subset of training examples of local interest only, the resulting 

classifier may be made more attuned to recognizing the subtle distinctions between 

documents belonging to that node and those belonging to its sibling nodes. While this 

technique promises to bring about more effective classifiers, it is also going to improve 

efficiency, since a smaller set of examples is used in training, thereby making classifier 

learning speedier. Many of these intuitions have been used in close association with several 

learning algorithms; the most popular choices in this respect have been naïve Bayesian 

methods, neural networks, support vector machines and example-based classifiers. 

In T2.1.3 we have used an HTC algorithm based on boosting technology, called 

TreeBoost.MH [Esuli et al, 2008]. The reasons for this choice include the fact that 

TreeBoost.MH has proved to be highly efficient highly accurate and above all competitive 

algorithms  we tested in several applications. We have previously applied this technology for 

the classification of newswire reports [Esuli et al, 2008], medical discharge reports [Esuli et 

al, 2008] and radiology reports [Baccianella et al, 2011]. TreeBoost.MH is a multi-label (ML) 

HTC algorithm that consists of a hierarchical variant of AdaBoost.MH [Schapire and Singer, 

2000], the most important member of the boosting algorithms family. Here, multi-label (ML) 

means that a document can belong to zero, one, or several categories at the same time. 

TreeBoost.MH embodies several intuitions that had arisen before HTC ( e.g. the intuitions 

that both feature selection and the selection of negative training examples should be 

performed “locally” (i.e. by paying attention to the topology of the classification scheme). 

TreeBoost.MH also incorporates the intuition that the weight distribution that boosting 

algorithms update at every boosting round should likewise be updated “locally”. All these 

intuitions are embodied within TreeBoost.MH in an elegant and simple way, i.e. by defining 

TreeBoost.MH as a recursive algorithm that uses AdaBoost.MH as its base step, and that 

recurs over the tree structure. 

In the next two sections we give a concise description of TreeBoost.MH. 

2.2.1 TreeBoost.MH: A hierarchical version of AdaBoost.MH for multi-label TC 

When discussing an HTC application it is always important to specify what the semantics of 
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the hierarchy is (i.e., to specify the semantic constraints that a supposedly perfect classifier 

would enforce). Knowing which constraints are in place has important consequences on 

which algorithms we might want to apply to this task, and more importantly, on how we 

should evaluate these algorithms. For instance, one should specify whether a document can 

in principle belong to zero, one, or several categories (which is indeed our assumption 

within T2.1.3), or whether it always belongs to one and only one category. No less 

importantly, one should specify whether it is the case that: 

1. a document d that is a positive example of a category is also a positive example of all 

its ancestor categories. We assume this to be the case. 

2. a document d can in principle be a positive example of an internal node category and 

at the same time not be a positive example of any of its descendant categories. We 

assume this to be the case. 

Assumption 2 is indeed useful for tackling datasets in which documents with these 

characteristics do occur, while at the same time not preventing us to deal with datasets with 

the opposite characteristics. A consequence of these two assumptions is that the set of the 

positive training examples of a non-leaf category is a (possibly proper) superset of the union 

of the sets of positive training examples of all its descendant categories. 

TreeBoost.MH embodies several intuitions that had arisen before within HTC.  

The first, fairly obvious intuition (which lies at the basis of practically all HTC algorithms 

proposed in the literature) is that, in a hierarchical context, the classification of a document 

is to be seen as a descent through the hierarchy, from the root to the (internal or leaf) 

categories where the document is deemed to belong. In ML classification this means that 

each non-root category has an associated binary classifier which acts as a “filter” that 

prevents unsuitable documents to percolate to the descendants of the category. All test 

documents that a classifier deems to belong to a category are passed as input to all the 

binary classifiers corresponding to its children categories, while the documents that the 

classifier deems not to belong to the category are “blocked” and analysed no further. Note 

that it may well be the case that a document is deemed to belong to a category by its 

corresponding classifier and is then rejected by all the binary classifiers corresponding to its 

children categories; this is indeed consistent with assumption (2) above. In the end, each 

document may thus reach zero, one, or several (leaf or internal node) categories, and is thus 

classified as belonging to them.  

The second intuition is that the training of a classifier should be performed “locally”, i.e. by 

paying attention to the topology of the classification scheme. To see this, note that, during 

classification, if the classifier for a category has performed reasonably well, the classifier for 

the children categories will only (or mostly) be presented with documents that belong to the 

subtree rooted in that category. As a result, the training of a classifier for a given category 

should be performed by using, as negative training examples, the positive training examples 

of its sibling categories, with the obvious exception of the documents that are also positive 

training examples of the category itself. In particular, training documents that only belong to 

categories other than those mentioned above need not be used. The rationale of this choice 

is that the negative training examples thus selected are “quasi-positive” examples of the 

category [Fagni and Sebastiani, 2010], i.e. are the negative examples that are closest to the 

boundary between the positive and the negative region of the category (a notion akin to 

that of “support vectors” in SVMs), and are thus the most informative negative examples 

that can be used in training. This is beneficial also from the standpoint of (both training and 
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classification time) efficiency, since fewer training examples and fewer features are 

involved. 

The third intuition is similar, i.e. that feature selection should also be performed “locally”, 

by paying attention to the topology of the classification scheme. As above, if the classifier 

for the category has performed reasonably well, the classifiers for its children categories will 

only (or mostly) be presented with documents that belong to the subtree rooted in the 

category itself. As a consequence, for the classifiers corresponding to the children 

categories, it is cost-effective to employ features that are useful in discriminating (only) 

among themselves. The features that discriminate among categories lying outside the 

subtree rooted in the category are too general and the features that discriminate among the 

subcategories of the children categories are too specific. This intuition, albeit in the slightly 

different context of single-label classification was first presented in [Koller and Sahami, 

1997]. 

TreeBoost.MH also embodies the novel intuition that the weight distribution that boosting 

algorithms update at every boosting round should likewise be updated “locally”. In fact, the 

two previously discussed intuitions indicate that hierarchical ML classification is best 

understood as consisting of several independent (flat) ML classification problems, one for 

each internal node of the hierarchy. In a boosting context, this means that several 

independent distributions, each one “local” to an internal node, should be generated and 

updated by the process. In this way, the “difficulty” of a category will only matter relative to 

the difficulty of its sibling categories. This intuition is of key importance in allowing 

TreeBoost.MH to obtain exponential savings in the cost of training over AdaBoost.MH. 

TreeBoost.MH incorporates these four intuitions by factoring the hierarchical ML 

classification problem into several “flat” ML classification problems, one for every internal 

node in the tree. TreeBoost.MH learns in a recursive fashion, generating a binary classifier 

for each non-root category, by means of which hierarchical classification can be performed 

in “Pachinko machine” style.  

Learning in TreeBoost.MH proceeds by first identifying whether a leaf category has been 

reached, in which case nothing is done, since the classifiers are generated only at internal 

nodes. If an internal node has been reached, a ML feature selection process may (optionally) 

be run to generate a reduced feature set on which the ML classifier for the node will 

operate. This may be dubbed a “glocal” feature selection policy, since it takes an 

intermediate stand between the well-known “global” policy (in which the same set of 

features is selected for all the categories) and the “local” policy (in which a different set of 

features is chosen for each different category). The glocal policy selects a different set of 

features for each (maximal) set of sibling categories. We use information gain as the feature 

selection function and Forman’s [2004] round robin as a feature score globalization method. 

After the reduced feature set has been identified, TreeBoost.MH calls upon AdaBoost.MH to 

solve a ML (flat) classification problem for the set of sibling categories. Again, in order to 

implement the “quasi-positive” policy discussed above, the negative training examples of a 

category are taken to be the set of the positive training examples of its sibling categories 

minus the positive training examples of the category itself. Note that this implements the 

view of several independent, “local” distributions being generated and updated during the 

boosting process. 

Finally, after the ML classifier for a maximal set of sibling categories has been generated, for 

each such category a recursive call to TreeBoost.MH is issued that processes the subtree 
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rooted in the category in the same way. The final result is a hierarchical ML classifier in the 

form of a tree of binary classifiers, one for each non-root node, each consisting of a 

committee of decision stumps. 

2.2.2 Related work 

HTC was first tackled in Wiener et al. [1995], in the context of a TC system based on neural 

networks and latent semantic indexing. The intuition that it could be useful to perform 

feature selection locally by exploiting the topology of the tree is originally due to Koller and 

Sahami [1997]. However, this work was dealing with single-label text categorization, which 

means that feature selection was performed ‘‘collectively’’( i.e., relative to the set of 

children of each internal node). Given that in T2.3.1 we are in an ML classification context, 

we instead do it ‘‘individually’’ (i.e. relative to each child of any internal node). The intuition 

that the negative training examples for training the classifier for a given category could be 

limited to the positive training examples of categories topologically close to it is due to Ng et 

al. [1997] and Wiener et al. [1995]. The fact that in an ML classification context the 

classifiers at internal nodes act as ‘‘routers’’ informs much of the HTC literature and is 

explicitly discussed in Ruiz and Srinivasan [2002], which proposes a HTC system based on 

neural networks. 

Other works in hierarchical text categorization have focused on other specific aspects of the 

learning task. For instance, the ‘‘shrinkage’’ method presented in McCallum et al. [1998] is 

aimed at improving parameter estimation for data-sparse leaf categories in a single-label 

HTC system based on a naive Bayesian method. The underlying intuitions are specific to 

naive Bayesian methods and do not easily carry over to other contexts. Incidentally, the 

naive Bayesian approach seems to have been the most popular among HTC researchers, 

since several other HTC models are hierarchical variations of naive Bayesian learning 

algorithms [Chakrabarti et al. 1998; Gaussier et al. 2002; Toutanova et al. 2001; Vinokourov 

and Girolami 2002]. SVMs have also recently gained popularity in this respect [Cai and 

Hofmann 2004; Dumais and Chen 2000; Liu et al. 2005; Yang et al. 2003]. 
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3. Software Requirements Overview 

3.1 Knowledge extraction 

Europeana metadata contains both structured and unstructured information. Structured 

information is provided by those metadata fields that identify well-specified type of 

information (e.g., "date", "creator", "language", etc.). Unstructured information is provided 

by those metadata fields that act as containers of generic information (e.g., "description"). 

The aim of the knowledge extraction service (Task 2.1.2) is to provide the ASSETS platform 

with automatic information extraction functionalities that enable to extract relevant 

structured information (e.g. names of persons, locations, organizations, from unstructured 

metadata fields contained in Europeana records). 

3.1.1 Problem statement 

The presence of relevant information stored only in unstructured fields affects the metadata 

of almost any Europeana content provider. In these cases, potentially relevant information 

is not given a proper representation in the Europeana records, but it is mentioned in 

generic, unstructured, textual fields. 

The recognition and extraction into dedicated data structures of relevant information 

contained in unstructured text fields would improve the Europeana records by supporting 

the completion and/or correction of metadata fields in the original records. Additionally  it 

supports enriching such records with additional fields and enabling the Europeana users to 

access and search such additional structured information. 

3.1.2 Product position statement 

The Knowledge extraction service enables Europeana and Content Providers who need to 

enrich their content by extracting knowledge from unstructured text  to perform automatic 

extraction, once provided with an example set of manually annotated documents. 

Unlike completely manual processing or rule-based annotation systems, the knowledge 

extraction service allows to process large amounts of data by providing a set of examples 

without requiring the provider to learn complex rule definitions for rule-based annotations. 

In our approach, the provider is asked just to annotate the relevant pieces of text for the 

various types of information to be extracted. 

3.1.3 Stakeholder Descriptions 

Name: Content Providers and Europeana 

Description: Any content provider that provides data to Europeana, whose data contains 

relevant fields for the extraction process ( e.g. textual descriptions) can take benefit of these 

services. The Europeana ingestion team may use the services for the data already acquired 

by Europeana. 

Responsibilities: These stakeholders are responsible to:  

(i) define the annotation schema that identifies the relevant types of information 
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to be extracted;  

(ii) select and annotate a set of records, following the annotation schema. 

 

Name: ISTI-CNR 

Description: The research group at ISTI-CNR that is responsible for the knowledge extraction 

task. 

Responsibilities: This stakeholder is responsible to:  

(i) support content providers and Europeana in the process of defining the 

annotation schema;  

(ii) provide the proper linguistic analysis, statistical analysis, and machine learning 

methods best suited for the extraction task as defined by the annotation 

schema;  

(iii) provide the functionalities to include the generated automatic extractors into 

the ASSETS ingestion workflow. 

 

3.1.4 User Environment 

This service is intended to provide its functionalities to ingestion workflow service of the 

ASSETS platform without any direct interaction with the user. 

3.1.5 Feature or Functionality Overview 

The development of an information extraction service for a specific type of information is a 

process that involves three steps: 

1. Definition of an annotation schema for a specific information extraction process. 

The data provider identifies a relevant type of information to be extracted from its 

records. 

2. Definition of a training set for a specific information extraction process. The data 

provider produces a training set of manually annotated records following the 

annotation schema. There is no upper limit to the number of annotated records that 

could be generated by the content providers. This training set of annotated records 

is given in input to the automatic knowledge extraction system in order to produce 

and extraction model. 

3. Automatically enrich metadata records by extracting information from unstructured 

text. The content provider sends to the service a set of non-annotated records and 

specifies the trained extraction model to be applied. The service returns a set of 

new instances of the records in which the information that is relevant to the 

extraction model has been annotated and copied into dedicated metadata fields. 

3.1.6 System Qualities 

Usability: The service will provide an API and the relative documentation for inclusion into 

the ASSETS platform ingestion workflow. 
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Reliability: The service does not provide at any time critical functionalities. The service 

provides methods for process progress control for batch processing requests. 

Performance: Information extraction is a task that is part of the ingestion workflow. Given 

that this process is executed in back-office as part of the ASSETS platform and also that the 

knowledge extraction process does not require active user interaction, the performance of 

the system are not a critical aspect. However, the system is based on state-of-the art 

algorithms and data structures in order to provide the users with the maximum efficiency. 

Annotation requests for a single record to be typically complete in 5-10 seconds. Batch 

processing requests exploits bulk processing of records in order to speed up the annotation 

process that  is expected to be about on order of magnitude faster than online annotation. 

User Interfaces: The service does not require a user interface. 

Software Interfaces: The service is accessible within the ASSETS ingestion workflow service 

by providing  a RESTful HTTP interface.  

3.1.7 System Constraints 

The service is developed in Java. 

3.1.8 System Compliance 

Licensing Requirements: The service adopts an open source, EUPL-compatible license. 

Legal, Copyright, and Other Notices: Third party components are a Java virtual machine and 

several Java libraries (e.g. like Log4J). Any other additional library referred by the service is 

licensed with an open source, EUPL-compatible license. 

3.1.9 System Documentation 

Javadoc documentation for developers is provided for the service API. 

3.2 Metadata Classification Service 

The aim of the metadata classification service (Task 2.1.3) is to provide the ASSETS platform 

with the functionality of automated classification of metadata records under a taxonomy of 

categories of interest. 

The classification process consists of linking a record to zero, one, or several categories from 

a (taxonomically organized) set of predefined categories (aka "classes", or "concepts", or 

"codes"). The set of predefined categories is called the classification scheme. Classification is 

thus akin to "populating" a taxonomy with instances of the concepts in the taxonomy. 

Europeana records are provided by many different content providers, which may: 

(i) not use any classification schema for their data,  

(ii) use a very specific classification scheme custom-tailored to specific local purposes 

of the content provider, 

(iii) use a standard well-known classification schema for their data, either general-

purpose (e.g., Library of the Congress Subject Headings, LCSH) or discipline-specific 

(e.g., Medical Subject Headings).  
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Among these three cases the last one is certainly the preferred one for Europeana. 

The metadata classification service enables Europeana and content providers to 

automatically classify unlabelled metadata records, following a set of general-purpose 

and/or discipline-specific classification schema. 

The ultimate goal of the task is making the searching and browsing experience from the 

user’s view more satisfactory; e.g.: 

� user can navigate from record to concept and to other records belonging to same 

concept or sibling concepts; 

� user can restrict search to records belonging to a specific concept; 

� user can ask to group the search results according to the concepts they belong to. 

3.2.1 Problem Statement 

Europeana, Content Providers, and Europeana users, could benefit from having the 

metadata records properly linked to a set of classes in a general-purpose or discipline-

specific taxonomy. Most of Europeana records are currently not structured into general-

purpose and/or discipline-specific taxonomies, losing the possibility to search, browse and 

navigate through records by considering the concepts/classes they belong to. Performing 

the classification of Europeana records into general-purpose and/or discipline-specific 

taxonomies would enable new access methods to records based on the concept/classes 

they belong to. 

3.2.2 Product Position Statement 

The metadata classification service enables to perform automatic metadata classification of 

record once provided with an example set of manually classified records, supporting 

Europeana and Content Providers in the process of enriching their content by classifying 

their records according to a classification schema. 

Instead of adopting a completely manual classification of documents, which requires a large 

human effort, or a rule-based classification method, which requires the provider to learn 

complex rule definitions, the metadata classification service allows to process large amounts 

of data by providing a relatively small set of examples with regard to the size of metadata 

collections. 

3.2.3 Stakeholder Descriptions 

Name: Content Providers and Europeana 

Description: Any content provider that provides data to Europeana and the Europeana 

ingestion team would be interested to use this service for metadata enrichment. 

Responsibilities: These stakeholders will be responsible to:  

(i) define the classification scheme to be used for record classification;  

(ii) select and manually classify a set of records, following the classification scheme.  

Name: ISTI-CNR 

Description: The research group at ISTI-CNR that is responsible for the metadata 

classification task. 
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Responsibilities: This stakeholder will be responsible to:  

(i) support content providers and Europeana in the process of defining the 

classification scheme; 

(ii) design and develop the proper linguistic analysis, statistical analysis, and 

machine learning methods best suited for the classification task, as defined by 

the classification schema; 

(iii) provide the functionalities to include the generated metadata classifiers into the 

ASSETS ingestion workflow. 

3.2.4 User Environment 

This service is intended to provide functionalities to other services of ASSETS/Europeana, 

without any direct interaction with the user. 

3.2.5 Feature or Functionality Overview 

The development of a classification service for a given classification scheme is a process that 

involves three steps: 

1. Definition of a classification scheme for a specific metadata classification process. 

The content provider identifies a classification scheme for the classification of its 

records. 

2. Definition of a training set for a specific metadata classification process. The content 

provider produces a training set of at least one thousand manually classified records 

following the classification scheme. 

3. Classify a record according to a given taxonomy. The data provider sends to the 

service a set of unclassified records, and specifies the metadata classification model 

to be adopted. The service returns a set of new instances of the records in which the 

proper codes are assigned to records. 

3.2.6 System Qualities 

Usability: The service provides an API, and the relative documentation, for inclusion into the 

ASSETS platform ingestion workflow. 

Reliability: The service does not provide at any time critical functionalities. The service 

provides methods for process progress control for batch processing requests. 

Performance: Performance is not a critical issue for the classification service, since it is  

performed in the backoffice part of Europeana, and it does not require user interaction. 

However, the system adopts state-of-the-art algorithms and data structures in order to 

provide an efficient service. Online classification requests for a single record will typically 

complete in 2-5 seconds, while bulk requests will be processed about one order of 

magnitude faster, exploiting bulk processing of records. 

User Interfaces: The service does not require a user interface. 

Software Interfaces: The service is accessible within the ASSETS ingestion workflow service 

by means of a RESTful HTTP interface.  
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3.2.7 System Constraints 

The service is developed in Java. 

3.2.8 System Compliance 

Licensing Requirements: The service adopts an open source, EUPL-compatible license. 

Legal, Copyright, and Other Notices: Third party components are a Java virtual machine and 

several Java libraries (e.g. like Log4J). Any other additional library referred by the service is 

licensed with on open source, EUPL-compatible license. 

3.2.9 System Documentation 

Javadoc documentation for developers is provided for the service API. 
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3.3 Ingestion Workflow service 

3.3.1 Problem statement 

The Europeana web portal implements a search engine over the European cultural heritage. 

In order to provide this functionality, an index with the description of the masterpieces of 

objects available in Galleries, Libraries, Archives and Museum (GLAM) institutions was 

created by aggregating information retrieved from the Content Providers (CPs, see Figure 1).  

 

Figure 1 Aggregators in the Europeana organisation mode 

The aggregation and ingestion are complex processes which were formalized in a flow 

diagram within the requirements specification for the Danube release of Europeana. A 

unified ingestion manager application is developed in order to offer support for scheduling, 

executing and monitoring ingestion related activities. The professional services that have 

been developed within the ASSETS project address the steps 7.Data Enrichment and 9. AIP-

Phase of the process sketched in Figure 2.  

Further descriptions of each ingestion related task is available in Europeanalabs:  

http://europeanalabs.eu/wiki/SpecificationsDanubeRequirementsContentInTools 
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Figure 2 The Europeana Ingestion Process 

3.3.2 Functionality overview 

The metadata enrichment are the subject of this document, and they belong to the 

workflow (step 7, Figure 2) while the indexing services and preservation services (Step 9, 

Figure 2) will be ordinately described in the deliverables D2.2.5 (“Scalable Content Indexing 

and Ranking”) and D2.3.2 (“Deployed Preservation Services”). 

ASSETS project extends the GUI of the Europeana Ingestion “Control Panel” by 

implementing screens that manage the following functionalities:  

• Enrichment model learning: by using a training set appropriate for their metadata, 

the content providers or Europeana are allowed to run the learning of enrichment 

models for metadata classification or knowledge extraction, 

• Enrichment by metadata classification: the classification of a collection can be 

performed by selecting an appropriate classification model, 

• Enrichment by knowledge extraction:  the extraction of the structured knowledge 

from the object descriptions can be performed similarly to the classification by 

selecting an appropriate model and the collection to be enriched. 

During the project specification phase, the most of the professional and the indexing 

services were identified to belong to the post ingestion process. In our case this is 

equivalent to the Access Information Package creation Phase (AIP-Phase) indicated in step 9 

of the Europeana Ingestion Process.  

In the DoW, these services were defined to be accessed through REST or command line 

interfaces. During the integration in Europeana, these services will be bound within the 

UIM-Control Panel as well.   
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3.3.3 System Qualities 

Usability: The service will provide a web based graphical UIM and a user manual to support 

its usage. 

Reliability: The enrichment of large metadata collections or the model training might take 

long time, the invocation must not block the GUI of the ingestion workflow management. 

Moreover, the GUI must display the status of the training/enrichment tasks.   

Performance: The ingestion process is a back office process, and the response time of the 

Ingestion Workflow interface must be in the range of regular web applications. 

User Interfaces: The GUI must be web based and support the most common web browsers 

(i.e. Internet explorer, Mozilla) 

Software Interfaces: The Ingestion Workflow must be able to invoke webservices remotely 

and must be able to work on a cluster infrastructure. The workflow must implement an easy 

extendable architecture. 
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4. Technical Documentation: 

4.1 UML Diagrams 

4.1.1 Knowledge extraction service 

Use case: Training of a knowledge extraction model 

The Knowledge Extraction Service is based on the use of supervised learning algorithms. In 

order to allow the service to perform knowledge extraction of a certain type of information, 

a training set has to be provided as input to the learning algorithm. The training set consists 

of examples of records in which the relevant information to be extracted has been manually 

annotated by human experts. 

Actor: Content provider.  

The content provider generates a training set containing manually annotated records in 

order to support the machine learning process of the knowledge extraction service for 

relevant information types, e.g., time expressions, named entities (persons, locations, 

organizations).  

Basic flow of events:  
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Figure 3 Flow of events for the training of the extraction service 

0. The use case begins when the learning algorithm is provided with a training set of 

examples of annotated records. 

1. The relevant textual metadata fields of the records composing the training set are 

processed by linguistic and statistical tools in order to produce their vectorial 

representation that will then be processed by the learning algorithm. 

2. The learning algorithm processes the vectorial representations and learns a 

knowledge extraction model. 

3. The information relative to the transformation of records into the corresponding 

vectorial representations and the knowledge extraction model are stored for future 

use by the knowledge extraction service. 

4. In case an error condition happens during the execution, any exception is caught by 

an exception handler that manages the error in order to guarantee a safe conclusion 

of the process (e.g., properly releasing the acquired resources). 

5. The learning process ends. 

Key scenarios: 



 

ASSETS Ingestion Services – 2nd release                           Page 25 D2.1.3 V1.3 

 

1. Success: correct input parameters and well-formed training set. 

2. Error: wrong input parameters or incorrect training set format. 

Post-conditions: 

1. Success: an extraction model is generated and made available to the ingestion 

workflow. 

2. Error: no extraction model is generated and an error message is returned. 

 

Use case: Knowledge Extraction Service invocation 

The Knowledge Extraction Service is a plugin in the Ingestion workflow service and provides 

enrichment functionality. 

Actor: ASSETS ingestion workflow user. 

As part of the configuration of the ingestion workflow service, the actor selects the records 

to be processed by the knowledge extraction service, the proper type of knowledge to be 

extracted, and after the service execution the actor inspects the results. 
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Figure 4 Flow of the events for the enrichment process based on the extraction 

service 

Basic flow of events: 

0. The ingestion workflow service notifies the knowledge extraction service about the 

records that have to be processed, the type of knowledge that has to be extracted 

from records, and other relevant parameters. Ingestion service sends the records to 

be processed to the knowledge extraction service. If a knowledge extraction model 

for the required type of information is not available, the extraction process 

immediately ends; no output is produced. 

1. The proper knowledge extraction model and the information relative to the 

transformation of records into the corresponding vectorial representations are 

retrieved from storage. 

2. The records provided in input are converted into vectorial representations. 

3. Each vectorial representation is processed by the knowledge extraction model, 

resulting in annotation/extraction of pieces of text from the original record. Such 
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pieces of text are used to fill in the metadata fields that are designed to store the 

type of information that is the subject of the extraction process (e.g., author, date). 

4. In case an error condition happens during the execution, any exception is caught by 

an exception handler that manages the error in order to guarantee a safe conclusion 

of the process (e.g., properly releasing the acquired resources). 

5. Once the knowledge extraction service has completed its processing, the ingestion 

service retrieves the enriched version of the records from the knowledge extraction 

service. 

Key scenarios: 

1. Success: the input parameters are correct and the requested knowledge extraction 

model is available. 

2. Error: wrong input parameters or the requested knowledge extraction model is 

unavailable. 

Post-conditions: 

1. Success:  an enriched and distinct copy of the input record is made available to the 

ingestion workflow service. 

2. Error: no enriched records are generated. 

 

4.1.2 Metadata classification service 

Use case: Training of a classification model 

The Metadata Classification Service is implemented by using supervised learning algorithms. 

In order to allow the service to perform classification of records under a given classification 

scheme, a training set has to be provided as input to the learning algorithm. The training set 

consists of examples of records that have been manually classified by human experts. 

Actor: Content Provider. 

The content provider generates a training set in the form of manually classified records, in 

order to support the training of the automatic metadata classification service for relevant 

classification schemes. 

Basic flow of events: 
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Figure 5 Flow of events for the training of the classification service 

0. The use case begins when the learning algorithm is provided with a training set of 

examples of classified records. 

1. The textual metadata fields of the records composing the training set are combined 

and processed by linguistic and statistical tools in order to produce vectorial 

representation that will then be processed by the learning algorithm. 

2. The learning algorithm processes the vectorial representations and learns a 

classification model. 

3. The information relative to the transformation of records into the corresponding 

vectorial representations and the classification model are stored for future use by 

the classification service. 

4. In case an error condition happens during the execution, any exception is caught by 

an exception handler that manages the error in order to guarantee a safe conclusion 

of the process (e.g., properly releasing the acquired resources). 

5. The learning process ends. 
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Key Scenarios: 

1. Success: correct input parameters and well-formed training set. 

2. Error: wrong input parameters or training set in incorrect format. 

Post-conditions: 

1. Success: a classification model is generated and made available to the ingestion 

workflow service. 

2. Error: no classification model is generated. 

 

Use case:  metadata classification service invocation 

The Metadata Classification Service is a plugin in the Ingestion workflow service and 

provides the enrichment functionality. 

Actor: ASSETS ingestion workflow manager (user). 

As part of the configuration of the ingestion workflow service, the actor selects the records 

to be processed by the metadata classification service; the proper classification scheme is 

then applied, and after the service execution the actor inspects the results. 
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Basic flow of events: 

 

Figure 6 Flow of the events for the enrichment process based on the classification 

service 

0. The ingestion workflow service notifies the metadata classification service about the 

records that have to be processed, the classification scheme to be applied, and 

other relevant parameters. Ingestion workflow service sends the records to be 

processed to the classification service. 

1. The proper classification model and the information relative to the transformation 

of records into the corresponding vectorial representations are retrieved from 

storage. 

2. The records provided in input are converted into vectorial representations. 

3. Each vectorial representation is processed by the classification model, resulting in 

classification label begin associated to the original record. 

4. In case an error condition happens during the execution, any exception is caught by 
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an exception handler that manages the error in order to guarantee a safe conclusion 

of the process (e.g., properly releasing the acquired resources). 

5. Once the classification service has completed its processing the ingestion service 

retrieves the classified version of the records from the classification service.  

Key scenarios: 

1. Success: the input parameters are correct and the requested metadata classification 

model is available. 

2. Error: wrong input parameters or the requested metadata classification model is 

unavailable. 

Post-conditions: 

1. Success:  an enriched and distinct copy of the input record is made available to the 

ingestion workflow service. 

2. Error: no enriched records are generated. 

 

4.1.3 Ingestion workflow management 

The execution of the Ingestion Workflow will perform the actions indicated in the activity 

diagram presented in the Figure 7. This use-case describes the activities which are 

performed during the invocation of the ingestion workflow. The main goal of this service is 

to integrate and manage the execution of the metadata enrichments as an integrated 

process. A (web based) graphical interface was implemented in order to allow the users to 

perform the following actions:  

• start the execution of the ingestion workflow, 

• monitor the progress of the execution,  

• verify the successful workflow execution,  

• visualize error reports.  
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Figure 7 Activity diagram for ingestion workflow management 

Basic flow of events: 

0. Start. The execution of the use-case begins when the user accessed a corresponding 

screen in the graphical interface  

1. Initialize Workflow Execution. The first step in the workflow will initialize the execution. 

This step must resolve problems like: loading component configurations, localizing and 

connecting to the local resources, etc. The ingestion workflow will process a bundle of 
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objects grouped in a collection.  This step will also allow users to upload their own metadata 

collections and training sets to the server.   

2. Harvest Binary Content. The second step in the execution workflow could optionally 

invoke the service responsible for harvesting the binary files associated with the given 

collection (only if a valid reference is available in item's metadata). The files which are not 

available will be skipped; the broken links will be reported in service logs. If the file was 

already downloaded in a previous execution, the harvesting will be skipped in order to 

speed up the process and to avoid overload on the content provision server. 

3. Knowledge Extraction. Invocation of the knowledge extraction service. See Knowledge 

Extraction Service Requirements  

4. Show Progress / Step Completion. The most of the services invoked by the ingestion 

workflow are long lasting processes. Therefore, they will be started asynchronously and the 

progress of the computations will be provided by request. Therefore the activities Nr. 4-6-8 

will be implemented as loop activities, and will permanently indicate the progress of the 

associated activity. 

5. Metadata Classification. Invocation of the metadata classification service. See Metadata 

Classification Service Requirements  

6. Show Progress / Step Completion. See step 4.  

7. Metadata Ingestion. The enriched metadata will be stored in the ASSETS/Europeana 

(backend) database.  

8. Show Progress / Step Completion. See step 4.  

9. Exception Handler. The invocation of each activity from the ingestion workflow may fail 

and throw an exception. The exception handler is responsible for extracting the user friendly 

information from the caught exceptions and passing this information to the next processing 

step.  

10. Error Report generation. In the case that a workflow execution exception occurred, an 

error report will be generated, stored in the system logs and shown to the user.  

11. Finalize Workflow Execution. For either faulty or successful execution, the ingestion 

workflow must terminate with releasing the locked resources and sending user notification. 

Eventually, information about the execution of the ingestion workflow can be stored in the 

database. 

 

4.2 Service APIs 

4.2.1 Knowledge extraction service 

The Knowledge Extraction service exposes its functionalities through three interfaces. 

Service Name Knowledge Extraction 

Responsibility 1. Extraction of structured information from unstructured textual 

metadata fields within Europeana metadata records 
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Provided 

Interfaces 

1. KnowedgeExtractionTrainer,  

2. KnowledgeExtractionManager,  

3. KnowledgeExtractor 

Dependencies ASSETS common 

 

The KnowledgeExtractionManager interface enables the management of the available 

knowledge extraction model.  

Interface 

Name 

KnowledgeExtractionManager 

Key Concepts MetadataKnowledgeExtractionModel, KnowledgeExtractorDescriptor 

Operations • listMetadataKnowledgeExtractor: lists the knowledge extractor 

models available for enrichment. 

• deleteMetadataKnowledgeExtractor: deletes a knowledge extractor 

model. 

• getKnowledgeExtractorDescriptor: returns a descriptor of the 

knowledge extractor model detailing the type of extracted 

information. 

 

The KnowledgeExtractionTrainer interface enables the creation of new extraction models 

based on a proper formatted training set. It also allows checking the status of a training 

process. 

Interface 

Name 

KnowledgeExtractionTrainer 

Key Concepts MetadataKnowedgeExtractionTrainingSet,  

MetadataKnowledgeExtractionModel 

Operations • trainMetadataKnowledgeExtractor: learns an extraction model with 

the provided training data. 

• getTrainingStatus: returns the status of a learning process. 

 

The KnowledgeExtraction interface enables the use of a trained extraction model to enrich a 

metadata record. 

Interface 

Name 

KnowledgeExtractor 

Key Concepts MetadataDataset, MetadataKnoledgeExtractionModel 

Operations • extractKnowledgeFromMetadata: enriches a metadata record using a 

previously trained knowledge extraction model. 
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Any training request is assigned with a unique identifier. The status of a training process is 

described by an enumeration that lists four possible states of a training process (see Figure 

8). The type of information extracted by an extraction model is described by a 

KnowledgeExtractionDescriptor object (see Figure 8). 

 

Figure 8  Knowledge Extraction Data Model 
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Figure 9  Knowledge Extraction REST API 
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Figure 10  Knowledge Extraction API 
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4.2.2 Metadata classification service 

The Metadata Classification service exposes its functionalities through three interfaces. 

Service Name Metadata Classification 

Responsibility 1. Classification of Europeana metadata records on relevant taxonomies 

Provided 

Interfaces 

1. ClassificationTrainer,  

2. ClassificationManager,  

3. ClassificationService 

Dependencies ASSETS common 

 

The ClassificationManager interface enables the management of the available knowledge 

extraction model.  

Interface 

Name 

ClassificationManager 

Key Concepts MetadataClassificationModel 

Operations • listMetadataClassifier: lists the available metadata classifier models. 

• deleteMetadataClassifier: deletes a metadata classifier model. 

 

The ClassificationTrainer interface enables the creation of new extraction models, based on 

a proper training set, and the control of the status of a training process. 

Interface 

Name 

ClassificationTrainer 

Key Concepts MetadataClassificationTrainingSet, MetadataClassificationModel 

Operations • trainMetadataClassifier: learns a metadata classifier model, using the 

provided training data. 

• getTrainingStatus: returns the status of a learning process. 

 

The ClassificationService interface enables the use of a trained extraction model to classify a 

metadata record under a taxonomy of interest. 

Interface 

Name 

ClassificationService 

Key Concepts MetadataDataset, MetadataClassificationModel 

Operations • classifyMetadata: classifies a metadata record using a metadata 

classifier model. 

 

Any training request is assigned a unique identifier. The status of a training process is 
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described by an enumeration that lists four possible states of a training process. The type of 

taxonomy applied by a classification model is described by a 

MetadataClassificationDescriptor object. 

 

 

Figure 11  Metadata Classification Service API 
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Figure 12  Metadata Classification REST API 
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4.2.3 Ingestion workflow management service 

The ingestion workflow management service is implemented as a client-server application 

which provides a rich graphical user interface for invocation of the enrichment services. It is 

implemented as an extension of the Europeana ingestion control panel and it is 

implemented using the Google web toolkit (gwt) technology. The details of the GUI 

implementation are presented in the following tables and UML diagrams.  

The following table presents a brief overview of the service and the most important 

interfaces it uses: 

Service Name Ingestion workflow management – Frontend 

Responsibility Provides a GUI for performing the enrichment activities 

Provided 

Interfaces 

AssetsIngestionControlPanel ,  

EnrichmentServiceProxy,  

Dependencies Europeana ingestion framework, knowledge extraction  service, metadata 

classification service 

 

Assets control panel 

The ASSETS ingestion control panel is the class responsible for the binding of the enrichment 

screens into the ingestion application. The rendering of the enrichment screens (see Section 

5.3) is handled by special classes which extends the GWT Widget class. The overview of the 

AssetsIngestionPanel class is presented in the following table and the UML diagram 

presenting the details of these classes is available in Figure 13: 

Interface 

Name 

AssetsIngestionControlPanel extends EuropeanaIngestionControlPanel 

Key Concepts AssetsModelLearningWidget (model learning screen) 

AssetsEnrichmentTestWidget (enrichment test screen) 

AssetsCollectionKnowledgeExtractionWidget (knowledge extraction 

screen) 

AssetsCollectionClassificationWidget (metadata classification screen) 

Operations • onModuleLoad(): enhances the method in the parent class by adding 

the initialization of the enrichment service 

• addMenuEntries(): enhances the method in the parent class by 

binding the enrichment screens in the main menu 

 

Assets Enrichment Service Proxy 

The enrichment service is in charge of executing the operations requested through the 

control panel. It provides methods that handle the asynchronous communication between 

the client (web browser) and the UIM server. The data transferred between client and 

server is packaged as data transfer objects (DTOs). The enrichment service proxy is 
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responsible for the invocation of the knowledge extraction and metadata classification 

services and the aggregation of the information displayed in the enrichment screens. The 

EnrichmentServiceProxy interface is briefly documented in the following table and the full 

class diagram with dependencies is presented in Figure 14: 

 

Interface 

Name 

EnrichmentServiceImpl implements EnrichmentServiceProxy 

Key Concepts CollectionEnrichmentResultDTO: Object used to group together the 

information displayed after running the enrichment processes on a 

collection 

CollectionObjectDTO: Object used to represent the enriched collection 

object  

CollectionObjectPreviewDTO: Object used to present a preview of a 

collection object by displaying the most common information. 

EnrichmentModelDTO: Object used to display the properties of the 

enrichment models in the GUI 

EnrichmentResultDTO: Container object used to keep references to the 

input and the output of the (testing of the) enrichment process 

EuropeanaCollectionDTO: Object used to represent the basic information 

related to the metadata collections in the GUI 

ModelLearningStatusDTO: Object used to display the status of the model 

learning in the GUI 

SearchCriteriaDTO: Object used for collecting the search filter used by 

users to select the content. 

Operations • learnModel(): Method used for invoking the learning the enrichment 

model from the provided training set  

• getModelList(): Method used to retrieve the list of the available 

enrichment models 

• getColectionList(): Method used for retrieving the list of collections 

already ingested in Europeana application 

• getCollectionObjects(): Method used to retrieve the preview of the 

objects available in a collection with a given id. 

• getModelStatus(): Checks the learning status for a model with a given 

id. 

• deleteModel(): Method used to invoke the deletion of enrichment 

models 

• performKnowledgeExtraction(): The method used for invoking the 

knowledge extraction enrichment for the object identified by a given 

URI 

• getDataProviderList():The method used to retrieve the list of the data 



 

ASSETS Ingestion Services – 2nd release                           Page 43 D2.1.3 V1.3 

 

providers for given aggregator name 

• searchObjects(): Method used to search for objects in Europeana 

index by using a given search criteria 

• performKnowledgeExtraction(fileName): Method used to invoke the 

enrichment for all objects available in a given file  

• getColectionFileList(): Method used to retrieve the list of the collection 

files that are already uploaded on the server. 

• performMetadataClassification(): Method used for performing the 

metadata classification enrichment of all objects available in a given 

collection 
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Figure 13  Assets Ingestion Panel API 

 

Figure 14  Enrichment Service API 



 

ASSETS Ingestion Services – 2nd release                           Page 46 D2.1.3 V1.3 

 

4.3 Software Packaging 

The ingestion services are 100% java code, and are developed using Eclipse IDE and Maven 

built management. 

The metadata classification service depends on: 

• Jatecs-1.1, for indexing, transformation in vectorial form, learning algorithms, and 

application of learned model to metadata records. 

• Trove-2.1, for the efficient data structures used to store models and vectors. 

The knowledge extraction service depends on: 

• Stanford-corenlp-11.6.19, for POS tagging, and lemmatization. 

The ingestion workflow management web application depends on: 

• Ingestion-knowledgeextraction-client, lightweight library used for the remote 

invocation of knowledge extraction service 

• Ingestion-metadataclassification-client, lightweight library used for the remote 

invocation of metadata classification service 

• (ASSETS) Comon-client, lightweight library used for the remote invocation of 

common functionality of the ASSETS platform. It is used to retrieve the collections 

and the metadata available on remote ASSETS servers. 

• Europeana-uim-gui-controlpanel, the web application implementing the standard 

functionality of the Europeana ingestion process.  

The built process of all the ASSETS components is managed by Hudson, which automatically 

builds all components every night. The following artefacts are created for the ingestion 

services: 

• ingestion-knowledgeextraction-0.0.1-SNAPSHOT.war, the web application which 

implements the server side processing of the knowledge extraction service. The 

service interface is exposed as web services through the REST interface. 

• ingestion-metadataclassification-0.0.1-SNAPSHOT.war, the web application which 

implements the server side processing of the metadata classification service. The 

service interface is exposed as web services through the REST interface. 

• ingestion-knowledgeextraction-client-0.0.1-SNAPSHOT.jar, the lightweight library 

providing the JAVA API for remote invocation of the knowledge extraction service. 

• ingestion-metadataclassification-client-0.0.1-SNAPSHOT.jar, the lightweight library 

providing the JAVA API for remote invocation of the metadata classification service. 

• assets-uim-gui-controlpanel-0.0.1-SNAPSHOT.war, the web application 

implementing the GUI used for the execution of ingestion and enrichment 

processes.  
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4.4 Installation and configuration 

Both enrichment services require  to be provided the path in the file system where the 

learned models will be temporarily stored.  The XML files containing batches of metadata 

records given as input through the training sets are also saved locally. The enriched XML 

files produced as output are stored permanently in the subfolders of the same path. 

For the metadata classification service the properties are set in the file assets-ingestion-

metadataclassification.properties : 

path_to_models = ./services/ingestion-metadataclassification/data 

path_to_batches = ./services/ingestion-metadataclassification/batches 

 

For the knowledge extraction service the properties are set in the file assets-ingestion-

knowledgeextraction.properties: 

path_to_models = ./services/ingestion-knowledgeextraction/data 

path_to_batches = ./services/ingestion-knowledgeextraction/batches 

 

The ingestion workflow management application uses the 

AssetsIngestionControlPanel.gwt.xml and assets-uim-gui-controlpanel.properties 

configuration files which are available under project resources. The xml file is used for 

configuring the GWT engine by defining the AssetsIngestionControlPanel module. The 

information in this file is static and it is used for deploying the GWT application on the 

server. On the contrary, the .properties file contains information which is specific to each 

individual server: 
 
#folder to upload the training sets for knowledge extraction   
knowledge.extraction.models.folder = /assets/enrichment 
 
# folder to upload collections for performing the knowledge 
extraction tasks (take care for whitespaces at the end of 
properties) 
knowledge.extraction.collections.original.folder = 
./collections/original 
knowledge.extraction.collections.original.baseurl = 
http://127.0.0.1:8888/collections/original 
 
# folder to upload collections for performing the knowledge 
extraction tasks (take care for whitespaces at the end of 
properties) 
knowledge.extraction.collections.enriched.folder = 
./collections/extraction 
knowledge.extraction.collections.enriched.baseurl = 
http://127.0.0.1:8888/collections/extraction 
 
#folder to upload the training sets for knowledge extraction (take 
care for whitespaces at the end of properties) 
classification.models.folder = /assets/enrichment 
 
# folder to upload collections for performing the metadata 
classification tasks (take care for whitespaces at the end of 
properties) 
classification.collections.original.folder = ./collections/original 
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classification.collections.original.baseurl = 
http://127.0.0.1:8888/collections/original 
 
# folder to upload collections for performing the knowledge 
extraction tasks (take care for whitespaces at the end of 
properties) 
classification.collections.enriched.folder = 
./collections/classification 
classification.collections.enriched.baseurl = 
http://127.0.0.1:8888/collections/classification 
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5. User Manual 

This section gives the final user some guidelines to follow in order to define the set of 

metadata records to be included into the training set, so to ensure an accurate model will 

be generated by the learning processes. It also describes the XML data format for the 

specification of training sets for the knowledge extraction and metadata classification 

services. 

5.1 Knowledge extraction service 

5.1.1 Training set definition guidelines 

A training set is composed of a single file that specifies both the set of concepts to be 

extracted and some annotated training examples where the concept to be extracted is 

present.  

For example, if the set of relevant concepts includes ‘Name of person’, there must be 

examples where it is possible to locate the name of a specific concept, e.g., “Thomas Edison 

invented the filament lamp in America.” 

Typical relevant concepts are those of Person (e.g., “Thomas Edison”, “Barack Obama”), 

Organisation (e.g., “ONU”, “United States of America”, “USA”), Location (e.g., “Alps”, 

“Paris”). A relevant concept could be also a specialization of a general one (e.g., Music 

composer, Non-governmental organisation, Address) or be domain-specific (e.g., Painting 

technique, Music style, Tool).  

The mentions of entities that are instances of such concepts (e.g., “Oil painting of a view of 

the Arno river”, “Recording of the rock concert held in  London in 1982”, “Wooden sculpture 

of a head, sculpted with a carving fish tail”) are identified in text and annotated accordingly. 

In order to prepare the training set for the Knowledge Extraction service the users should 

perform the following steps: 

1. identify a set of concepts that are relevant for their activities and for which they can 

provide a critical mass of training examples; 

2. identify a set of metadata records to be submitted as training examples. Such 

metadata records should be representative cases in which a relevant concept (e.g., 

a person's name) occurs in an unstructured textual field (e.g., in the <description> 

field); 

3. locate the concepts in the textual fields of the examples and verify whether or not it 

will be necessary to indicate also the exact position of the concept in the text. If the 

position is not specified, then any instance of the annotated concept in the text is 

considered as an occurrence of that concept. For example, in "Paris Hilton went to 

Paris" the annotation of the location "Paris" must specify the position in text
2
, 

otherwise the name of Paris Hilton will also be considered as an occurrence of the 

location (if Paris Hilton is marked as a person, then the word Paris in Paris Hilton is 

                                                             
2 The various methods to indicate the position will be presented in next section, when discussing an example of a training set. 
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considered to have two annotations of different types); 

4. specify each occurrence of the concept by explicitly specifying the field where the 

concept occurs and, if needed, its position. 

With respect to the number of metadata records to be inserted into the training set, the 

basic guideline is that the more examples the learning algorithm gets in input, the more 

probably the learned automatic extractor will be accurate and able to recognize instances of 

concepts never seen before.  

A second guideline is that each concept in the set of relevant concepts should get a relevant 

number of examples (an indicative number is 1,000 examples per concept). It is not relevant 

for each metadata record in the training set to contain examples for each possible concept. 

5.1.2 Training data format 

The training sets created according to the previous guidelines must respect the syntax 

specified in the XSD schema file extractionSchema.xsd that defines the XML elements 

describing a training set. The extractionSchema.xsd file is part of the ASSETS software 

repository, and it is also fully included in Appendix A. Now we discuss in detail an example of 

a training set. We will show the steps that a user needs to perform in order to extract 

knowledge and, in particular, the name of a person from the following metadata record: 

<europeanaRecord> 

 <title>Lamp</title> 

 <description> 

  Thomas Edison invented the filament lamp in America at almost the 

  same time as Joseph Swan did in England. He produced this type of lamp   

  in 1880. This particular bulb comes from Pullar’s Dye Works in Perth, one   

  of the first buildings in Australia to install Edison lights. 

 </description> 

 <source>Tyne and Wear Imagine</source> 

 <provider>CultureGrid ; Uk</provider> 

 <identifier>http://www.imagine.org.uk/details/index.php?id=TWCMS:B5141a</i

dentifier> 

 <subject> inventors and innovators; people</subject> 

 <type>Image</type> 

</europeanaRecord> 

 

We are interested in extracting the names of persons (Thomas Edison, Joseph Swan), the 

names of places (America, Australia), and the names of organization (Pullar's Dye Works). 

The training set starts with the following lines: 

<?xml version="1.0" encoding="UTF-8"?> 

<extractionTrainingSet xmlns="http://www.example.org" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://www.example.org/ExtractionSchema.xsd "> 

The first line declares the XML version used in the file; the second line refers to the XML 

Schema that defines the syntax for the document, with a reference to the site 

http://www.example.org, which is only a dummy name that will be replaced with the real 

URL of the xsd file once the service is deployed. 
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After the short preamble, the extraction task is defined (XML comments are given inline to 

better clarify each element purpose): 

  <extractionTask> 

    <!-- This is the name of the field of the records from which information has to be 

extracted --> 

    <sourceFieldName>description</sourceFieldName> 

    <conceptSet> 

      <!-- This is a descriptive name for the extraction task --> 

      <name>NER for persons, organizations and locations</name> 

      <!-- Optional pointer to a resource that describes the concept set --> 

      <URI>http://en.wikipedia.org/wiki/Named_entity_recognition</URI> 

      <concepts> 

        <concept> 

          <!-- Name of the concept to be extracted --> 

          <name>person</name> 

          <!-- Optional pointer to a resource describing the concept --> 

          <URI>http://en.wikipedia.org/wiki/Person</URI> 

          <!-- Optional name of the target field in the record that has to be filled with 

extracted information --> 

          <targetField>extractedPerson</targetField> 

        </concept> 

        <concept> 

          <name>organization</name> 

          <URI>http://en.wikipedia.org/wiki/Organization</URI> 

          <targetField>extractedOrganization</targetField> 

        </concept> 

        <concept> 

          <name>location</name> 

          <URI>http://en.wikipedia.org/wiki/Place_(geography)</URI> 

          <targetField>extractedLocation</targetField> 

        </concept> 

      </concepts> 

    </conceptSet> 

  </extractionTask>  

 

The sourceFieldName element describes the unstructured textual field of the metadata 

record from which information has to be extracted, “description” in this case. 

In this example the set of concepts refer to a Named Entity Recognition (NER) task for 

persons, organization, and location. After naming the task, the set of concepts is specified: 

for each concept (described by a concept element), the user can optionally provide an URI 

describing in detail the aim of the task, and the target field of the output XML file where the 

extracted information will be stored (targetField). 

It is relevant to note that in the current implementation the optional targetField 

information, if specified, is not used by the service, which instead stores the automatically 

extracted information in a custom JSON-formatted element, the dcterms:references 

element of the ESE format (which was found to be the appropriate field for storing this type 

of information). This custom solution is due to the limited possibility of expansion of the ESE 
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format. However the targetField field has been left in the training data format in order to 

support its future use with the EDM format. 

Once the concept set has been defined, the user must provide the automatic information 

extractor with a set of examples in order to train it properly.  

All the examples are listed within an examples element, and each example is composed by 

two parts, the metadata record and the list of extracted concepts (stand-off annotation): 

  <examples> 

    <example> 

      <record> 

        <europeanaRecord> 

          <title>Lamp</title> 

          <description>Thomas Edison invented the filament lamp in America at almost the 

same time as Joseph Swan did in England. He produced this type of lamp in 1880. This 

particular bulb comes from Pullar's Dye Works in Perth, one of the first buildings in 

Australia to install Edison lights.</description> 

          <source>Tyne and Wear Imagine</source> 

          <provider>CultureGrid ;  Uk</provider> 

          

<identifier>http://www.imagine.org.uk/details/index.php?id=TWCMS:B5141a</identifi

er> 

          <subject> inventors and innovators;  people</subject> 

          <type>Image</type> 

        </europeanaRecord> 

      </record> 

      <extractedConcept> 

        <name>person</name> 

        <extractedText>Thomas Edison</extractedText> 

        <!-- A position specification is required when multiple instances of the extracted text 

appear in the field with different role. In this case no position is required.--> 

        <!-- In case a position is necessary, it can be expressed by copying the extracted text 

with enough surrounding text in order to make it uniquely identifiable. See examples in  

following concept extractions.--> 

        <URI>http://viaf.org/viaf/66552944/#Edison, Thomas A. (Thomas Alva), 1847-

1931</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>location</name> 

        <extractedText>America</extractedText> 

        <!-- Also for this case the position is not required. It is just reported as an example. --

> 

        <position> 

          <context>lamp in America at almost</context> 

        </position> 

        <URI>http://www.geonames.org/maps/google_39.76_-98.5.html</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>person</name> 
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        <extractedText>Joseph Swan</extractedText> 

        <!-- Position can also be expressed as the offset in number of characters from the 

beginning of the text in the field. --> 

        <position> 

          <startCharacterPosition>80</startCharacterPosition> 

          <endCharacterPosition>91</endCharacterPosition> 

        </position> 

        <URI>http://viaf.org/viaf/15100261/#Swan, Joseph Wilson, 1828-1914</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>location</name> 

        <extractedText>England</extractedText> 

        <URI>http://www.geonames.org/2635167/united-kingdom-of-great-britain-and-

northern-ireland.html</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>organization</name> 

        <extractedText>Pullar's Dye Works</extractedText> 

        

<URI>http://canmore.rcahms.gov.uk/en/site/127331/details/perth+pullar+s+dyeworks/

</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>location</name> 

        <extractedText>Perth</extractedText> 

        <URI>http://www.geonames.org/2063523/perth.html</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>location</name> 

        <extractedText>Australia</extractedText> 

        <URI>http://www.geonames.org/2077456/commonwealth-of-australia.html</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>person</name> 

        <extractedText>Edison</extractedText> 

        <position> 

          <context>to install Edison lights</context> 

        </position> 

        <URI>http://viaf.org/viaf/66552944/#Edison, Thomas A. (Thomas Alva), 1847-

1931</URI> 

      </extractedConcept> 

    </example> 

  </examples> 

 

For example, for the name of person “Thomas Edison” the user should prepare the XML 

element: 

      <extractedConcept> 

        <name>person</name> 
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        <extractedText>Thomas Edison</extractedText> 

        <URI>http://viaf.org/viaf/66552944/#Edison, Thomas A. (Thomas Alva), 1847-

1931</URI> 

      </extractedConcept> 

where there is no position indicated since there are no ambiguities in the description field of 

the metadata record this extractedConcept refers to. 

In the case the position must be indicated, the user may choose among different 

alternatives. They may select the context where the instance occurs, like, e.g., for the 

second concept to be extracted: 

        <position> 

          <context>lamp in America at almost</context> 

        </position> 

 

Alternatively, they may indicate the position in the description where the instance occurs. 

An example of this second option can be found in the third extracted concept: 

        <position> 

          <startCharacterPosition>80</startCharacterPosition> 

          <endCharacterPosition>91</endCharacterPosition> 

        </position> 

 

Appendix A contains the complete listing of the above example. 

5.1.3 Stand-alone test user interface 

Though the knowledge extraction service is meant to be accessed by users as a plugin of the 

ingestion workflow, we have developed a graphical user interface (GUI) that allows the user 

to directly connect to the service. The GUI uses the knowledge extraction client library to 

access the server through the REST interface that the server-side application exposes.  

The original purpose of the test GUI is to allow developers to have a direct access to the 

knowledge extraction service for testing and debug purposes, but also skilled users can 

benefit from its availability. 

In the knowledge extraction client repository, the GUI application is defined in the 

TestIngestionKnowledgeExtractionGui class, which is part of the 

eu.europeana.assets.ingestion.knowledgeextraction.client package. 

The GUI is composed by three areas (see Figure 15): 

� the top left area is devoted to set and start training requests; 

� the bottom left area is devoted to set and start enrichment requests; 

� the right area gives feedback on any request. 

In order to train a new knowledge extraction model, the user can select a training file 

(Figure 16) and launch the learning process. During the training process the GUI gives 

periodical feedback on the status. 
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Figure 15  Test GUI for knowledge extraction 

 

Once completed, the new knowledge extraction model is made available for selection in the 

list of models (Figure 17). 
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Figure 16  Selection of training file 

 

 

Figure 17  Output of training process and selection of the trained model for 

enrichment of metadata records 
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Figure 18  Selection of an XML file for enrichment 

A drop-down list displays all the available knowledge extraction models. The user can select 

an entire XML file containing metadata records in ESE format for batch processing (Figure 

18), or can specify the values of the title and description fields of a “dummy” custom-made 

record, in order to quickly check the output generated by a model. 

 

When processing a file, the output window gives feedback on the progress of the process 

(Figure 19). 

The enriched metadata records are saved in the same directory of the source file, with the 

“enrichedExtraction.” prefix.  

In the example, the output of the enrichment process of the “ina_10_ESE.xml” file is saved 

in the “enrichedExtraction.ina_10_ESE.xml”. Since the input and the output files differ only 

for the additional information added by the knowledge extraction process, the output file 

can be used as input for another enrichment process or as a direct substitute of the input 

file in the ingestion process. 
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Figure 19 Enrichment of an XML file 

 

When applied to a custom-made metadata record, the output window shows a list of the 

concepts extracted from the metadata record (Figure 20). 

It is worth to be noted the “- fr -” suffix to the names of available extractors is automatically 

determined by a language recognition module that is part of the knowledge extraction 

service. 

A user can simultaneously send more than one train and/or enrichment requests, since the 

service is designed to support concurrent requests. The only issue is that the feedback from 

the various requests will be mixed when printed in the output window. 
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Figure 20  Enrichment of a custom-made metadata record 

5.2 Metadata classification service 

5.2.1 Training set definition guidelines 

The user needs to prepare an XML file containing both the taxonomy of semantic categories 

its metadata belong to and some training examples composed of metadata record and 

desired category related to the chosen taxonomy. For instance, if a user has the following 

metadata record: 

<recording> 

  <title>The Marriage of Figaro</title> 

  <author>Wolfgang Amadeus Mozart</author> 

  <year>1943</year> 

  <director>Paul Breisach</director> 

  <orchestra>Metropolitan Opera Orchestra</orchestra> 

  <location>New York</location> 

</recording> 

and wants it to be classified into the “Classical” music category, then the user needs to 

prepare a labelled training example where the category “Classical” is associated to the 

previous metadata record. 
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Concerning the taxonomy, users with similar thematic collections are invited to select a 

common classification taxonomy. In fact, if there were a single taxonomy, the classifier 

induced by a training set coming from a given user might also be used with success on 

metadata coming from another user. 

In order to prepare a training set for the metadata classification service, the user should 

perform the following steps: 

1. select a classification taxonomy. The service is able to work with both a flat or a 

hierarchical taxonomy; 

2. select a set of metadata records; 

3. associate to each metadata record (selected in the previous step) one or more 

categories belonging to the taxonomy defined at step 1. 

With respect to the number of metadata record to be inserted into the training set, the 

basic guideline is that the more examples the learning algorithm gets in input, the more 

probably the learned automatic classifier will be accurate in the assignment of the 

categories.  

A second guideline is that each relevant category in the taxonomy should get a relevant 

number of examples (an indicative number is having a training set of at least 1,000 

metadata records, with at least 10 examples for the least popular category).  

It is relevant to have examples for each relevant category in the taxonomy, because any 

category that is not represented by at least one example will be discarded during the 

learning process and never assigned during the automatic classification process. 

5.2.2 Training data format 

The training sets created according to the previous guidelines must respect the syntax 

specified in the XSD schema file classificationSchema.xsd that defines the XML elements 

describing a training set. The classificationSchema.xsd file is part of the ASSETS software 

repository, and it is also fully included in Appendix B. 

Now we discuss an example of a training set in detail. We will show the steps that a user 

needs to perform in order to define a training set for the classification of music recording by 

genre. 

As for the previous service, the training set starts with the following lines: 

<?xml version="1.0" encoding="UTF-8"?> 

<classificationTrainingSet xmlns="http://www.example.org/" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://www.example.org/ClassificationSchema.xsd "> 

 

Then, a section defines the classification taxonomy and its properties (like in previous 

section in-line comments describe the meaning of each XML element): 

  <classificationSchema> 

    <!-- A meaningful name for the classification schema --> 

    <name>a simple music genre classificiation schema</name> 

    <!-- Optional URI pointing to a description of the classification schema --> 

    <URI>http://en.wikipedia.org/wiki/Music_genre</URI> 
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    <!-- Type of classification schema 

         multiLabel: each record can be assigned to zero, one, or more than one class 

         singleLabel: each record has to be assigned to one and only one class 

    --> 

    <type>singleLabel</type> 

    <!-- List of classes --> 

    <classes> 

      <!-- Definition of a class --> 

      <class> 

        <!-- Class name --> 

        <name>classical</name> 

        <!-- Optional URI describing the class --> 

        <URI>http://en.wikipedia.org/wiki/Classical_music</URI> 

      </class> 

      <class> 

        <name>baroque</name> 

        <URI>http://en.wikipedia.org/wiki/Baroque_music</URI> 

        <!-- The classification schema could be hierachical. In this case "baroque" is a more 

specific definition of a classical music genre. --> 

        <!-- If a record is assigned to baroque it is implicitly also an example of classical 

music. --> 

        <!-- If a record is assigned to classical, it means that, though the record refers to 

classical music, it does not belong to any of the more specific classes. --> 

        <parentClassName>classical</parentClassName> 

      </class> 

      <class> 

        <name>modern</name> 

        <URI>http://en.wikipedia.org/wiki/20th-century_classical_music</URI> 

        <parentClassName>classical</parentClassName> 

      </class> 

      <class> 

        <name>romantic</name> 

        <URI>http://en.wikipedia.org/wiki/Romantic_music</URI> 

        <parentClassName>classical</parentClassName> 

      </class> 

      <class> 

        <name>jazz</name> 

        <URI>http://en.wikipedia.org/wiki/Jazz</URI> 

      </class> 

      <class> 

        <name>bebop</name> 

        <URI>http://en.wikipedia.org/wiki/Bebop</URI> 

        <parentClassName>jazz</parentClassName> 

      </class> 

      <class> 

        <name>funky</name> 

        <URI>http://en.wikipedia.org/wiki/Funk</URI> 

        <parentClassName>jazz</parentClassName> 
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      </class> 

      <class> 

        <name>swing</name> 

        <URI>http://en.wikipedia.org/wiki/Swing_music</URI> 

        <parentClassName>jazz</parentClassName> 

      </class> 

      <class> 

        <name>popular</name> 

        <URI>http://en.wikipedia.org/wiki/Popular_music</URI> 

      </class> 

      <class> 

        <name>country</name> 

        <URI>http://en.wikipedia.org/wiki/Country_music</URI> 

        <parentClassName>popular</parentClassName> 

      </class> 

      <class> 

        <name>punk</name> 

        <URI>http://en.wikipedia.org/wiki/Punk_rock</URI> 

        <parentClassName>popular</parentClassName> 

      </class> 

      <class> 

        <name>rap</name> 

        <URI>http://en.wikipedia.org/wiki/Hip_hop_music</URI> 

        <parentClassName>popular</parentClassName> 

      </class> 

    </classes> 

  </classificationSchema> 

 

The two relevant properties of a classificationSchema are  

(I) the specification of the single- or multi-label classification model, 

(II) the specification of any eventual hierarchy relation among categories. 

In the example above, the classification schema is said to be single-label, i.e., one and only 

one category can be assigned to every metadata record. Then some categories are said to 

be children of other categories, e.g., baroque is a child of classic. The learning algorithm 

exploits hierarchical information in order to perform a more efficient learning process and 

also to improve the accuracy of the learned classification model. 

The rest of the training file is composed of the examples list, i.e., manually classified 

metadata records. Each example is composed of the original metadata record and a list of 

assignedClass elements, listing the names of the classes assigned to the record. 

  <examples> 

    <example> 

      <record> 

        <recording> 

          <title>The Marriage of Figaro</title> 

          <author>Wolfgang Amadeus Mozart</author> 

          <year>1943</year> 
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          <director>Paul Breisach</director> 

          <orchestra>Metropolitan Opera Orchestra</orchestra> 

          <location>New York</location> 

        </recording> 

      </record> 

      <assignedClass>classical</assignedClass> 

    </example> 

    <example> 

      <record> 

        <recording> 

          <title> Brandenburg Concerto No. 1 - 1</title> 

          <author>Johann Sebastian Bach</author> 

          <orchestra>The Busch Chamber Players</orchestra> 

          <URI>http://en.wikipedia.org/wiki/File:Bach_-_Brandenburg_Concerto_No._1_-

_1._Allegro.ogg</URI> 

        </recording> 

      </record> 

      <assignedClass>baroque</assignedClass> 

    </example> 

    <example> 

      <record> 

        <recording> 

          <title>Für Elise</title> 

          <title>Bagatelle No. 25 in A minor</title> 

          <author>Ludwig van Beethoven</author> 

          <year>1867</year> 

        </recording> 

      </record> 

      <assignedClass>romantic</assignedClass> 

    </example> 

    <example> 

      <record> 

        <recording> 

          <title>Salt Peanuts</title> 

          <composed>1942</composed> 

          <year>1947</year> 

          <author>Dizzy Gillespie</author> 

          <description>Dizzy played for Lucky Millinder's band in the early '40s. It was a riff 

this band played, after a Dizzy solo in the tune "Little John Special", that Dizzy developed 

into his tune "Salt Peanuts".</description> 

          <URI>http://www.youtube.com/watch?v=kOmA8LOw258</URI> 

        </recording> 

      </record> 

      <assignedClass>bebop</assignedClass> 

    </example> 

    <example> 

      <record> 

        <recording> 
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          <title>Gotta Lotta Love</title> 

          <author>Tracy Marrow</author> 

          <author>Ice-T</author> 

          <album>Home invasion</album> 

          <year>1993</year> 

        </recording> 

      </record> 

      <assignedClass>rap</assignedClass> 

    </example> 

    <example> 

      <record> 

        <recording> 

          <title>The river unbroken</title> 

          <author>Dolly Rebecca Parton</author> 

          <year>1987</year> 

          <album>Rainbox</album> 

          <label>CBS</label> 

          <producer>Steve "Gold-E" Goldstein</producer> 

        </recording> 

      </record> 

      <assignedClass>country</assignedClass> 

    </example> 

  </examples> 

 

Appendix B contains the complete listing of the above example. 

In the example, the metadata records in the training set are in a proprietary format, while 

the latest release of the metadata classification service expects them to be usually in ESE 

format.  

The output of the metadata classification process is an exact copy of the metadata record 

given in input with additional dc:subject fields, one for each assigned class. The name of the 

assigned class is prefixed with the string “assets:” in order to distinguish automatically 

assigned classes from the original values of that field, e.g.: 

   <record> 

     <dc:identifier>0023420002</dc:identifier> 

     <dcterms:isPartOf>http://www.ina.fr/</dcterms:isPartOf> 

     <dc:title>Le bar du bébète show : [émission du 20 février 1995]</dc:title> 

     <dcterms:issued>1995-02-20</dcterms:issued> 

     <dcterms:extent>0h4m59s</dcterms:extent> 

     <dc:description xml:lang="fr">L'actualité de la semaine parodiée par les 

marionnettes du Bébête show. Cette semaine : 

- Au bar : François MITTERRAND, Henri EMMANUELLI, Jack LANG et Lionel JOSPIN 

candidat à l'élection présidentielle. Arrivée de Philippe SEGUIN qui a "affronté" Edouard 

BALLADUR à l'émission 7/7. Ce dernier entraine JOSPIN à être agressif.  

- Publicité : "Ecoutes express" par les productions Charles Pasqua. 

- Au bar : Nicolas SARKOZY et Jacques CHIRAC qui se moque d'Edouard BALLADUR. 

- Bande annonce : "Chirac était son nom" avec Jacques CHIRAC en Jésus et Edouard 

BALLADUR en Judas. 
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</dc:description> 

     <dc:subject>Humour</dc:subject> 

     <dc:type>Animation</dc:type> 

     <dc:type>Sketch</dc:type> 

     <dc:subject>François Mitterrand</dc:subject> 

     <dc:subject>Henri Emmanuelli</dc:subject> 

     <dc:subject>Jack Lang</dc:subject> 

     <dc:subject>Lionel Jospin</dc:subject> 

     <dc:subject>Philippe Seguin</dc:subject> 

     <dc:subject>Charles Pasqua</dc:subject> 

     <dc:subject>Edouard Balladur</dc:subject> 

     <dc:contributor>Guy Lecluyse</dc:contributor> 

     <dc:contributor>Christian Briand</dc:contributor> 

     <dc:contributor>Eric Gindre</dc:contributor> 

     <dc:contributor>Michel Guidoni</dc:contributor> 

     <dc:contributor>Jean Claude Poirot</dc:contributor> 

     <dc:publisher>TF1(diffuseur)</dc:publisher> 

     <dcterms:medium>video/mpeg</dcterms:medium> 

     <dc:language>fr</dc:language> 

     <dc:rights>Institut National de l'Audiovisuel</dc:rights> 

     

<europeana:object>http://www.ina.fr/images_v2/320x240/0023420002.jpeg</europe

ana:object> 

     <europeana:provider>ASSETS</europeana:provider> 

     <europeana:type>VIDEO</europeana:type> 

     <europeana:dataProvider>Institut National de 

l'Audiovisuel</europeana:dataProvider> 

     <europeana:isShownAt>http://www.ina.fr/video/0023420002/le-bar-du-bebete-

show-emission-du-20-fevrier-1995.fr.html#xtor=AL-3</europeana:isShownAt> 

     <dc:subject>assets:Humour</dc:subject> 

     <dc:subject>assets:Information politique économique sociale</dc:subject> 

   </record> 

 

The above metadata record of a video recording uses the dc:subject field to store different 

types of information, from a thematic class (Humour) to the names of people appearing in 

the video. The automatically assigned classes are listed at the end of the record. 

5.2.3 Stand-alone test user interface 

Though the metadata classification service is meant to be accessed by users as a plugin of 

the ingestion workflow, we have developed a graphical user interface (GUI) that allows the 

user to directly connect to the service. The GUI uses the metadata classification client library 

to access the server through the REST interface that the server-side application exposes.  

The original purpose of the test GUI is to allow developers to have a direct access to the 

metadata classification service for testing and debug purposes. 

In the metadata classification client repository, the GUI application is defined in the 

TestIngestionMetadataClassificationGui class, which is part of the 
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eu.europeana.assets.ingestion.metadataclassification.client package. 

The GUI is composed of three areas (Figure 21): 

� the top left area is devoted to set and start training requests; 

� the bottom left area is devoted to set and start enrichment requests; 

� the right area gives feedback on any request. 

In order to train a new metadata classification model, the user can select a training file 

(Figure 22) and launch a training. During the training process, the GUI gives periodical 

feedback on the status of the training process. 

Once completed, the new metadata classification model is made available for selection in 

the list of models (Figure 23). 

 

Figure 21 Test GUI for metadata classification 



 

ASSETS Ingestion Services – 2nd release                           Page 67 D2.1.3 V1.3 

 

 

Figure 22  Selection of training file 

 

Figure 23  Output of training process and selection of the trained model for 

enrichment of metadata records 

A drop-down list displays all the available metadata classification models. The user can 

select an entire XML file containing metadata records in ESE format for batch processing 

(Figure 24), or can specify the values of the title and description fields of a “dummy” 



 

ASSETS Ingestion Services – 2nd release                           Page 68 D2.1.3 V1.3 

 

custom-made record, in order to quickly check the output generated by a model. 

 

Figure 24  Selection of an XML file for enrichment 

When processing a file, the output window gives feedback on the progress of the process 

(Figure 25).  

The enriched metadata records are saved in the same directory of the source file, with a 

“enrichedClassification.” prefix. In the example, the output of the enrichment process of the 

“ina_10_ESE.xml” file is saved in the “enrichedClassification .ina_10_ESE.xml”. Since the 

input and the output files differ only for the additional information added by the metadata 

classification process, the output file can be used as input to another enrichment process, or 

as a direct substitute of the input file in the ingestion process. 
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Figure 25  Enrichment of an XML file 

When applied to a custom-made metadata record, the output window shows a list of the 

classes assigned to the metadata record (Figure 26). 

A user can simultaneously send more than one train and/or enrichment requests, since the 

service is designed to support concurrent requests. The only issue is that the feedback from 

the various requests will be mixed when printed in the output window. 
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Figure 26  Enrichment of a custom-made metadata record 

5.3 Ingestion Workflow GUI 

The GUI for the ingestion workflow management service is implemented as an extension of 

the UIM- Controlpanel. This provides a user friendly interface for management of 

enrichment related activities, which are: 

• training (learning) of enrichment models, 

• testing the enrichment models 

• execution of knowledge extraction tasks, 

• execution of metadata classification tasks. 

In the following chapters, we present some screenshots that show how the functionalities 

listed above have been implemented and the control elements available for user 

interaction. 

 

5.3.1 Enrichment model learning panel 

The panel used for creation and management of the enrichment models offers the 

possibility to run the following scenarios: create new models, visualize the existing models, 
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verify the learning status and delete an existing model (See Figure 27)  

 

Figure 27  Enrichment model learning screen 

To create a new enrichment model, the user must provide a file containing the training set 

defined according to the requirements specified in Sections 5.2.1 and 5.1.1, respectively. 

The input fields required for this operation (training set file, model type, description) are 

marked with red colour in Figure 27. By pressing the “Start Model Learning” button, the 

training file will be submitted to the server and the process of learning the enrichment 

model will be started. The status of the model learning will be displayed in the 

corresponding field. The model learning operation could take some time, depending on the 

size of the training set. During the learning operation, the panel will display the status 

RUNNING for the current model. The client is not notified automatically about the 

finalization of the learning operation, but the user is able to check if the new model has 

been created by refreshing the model list (i.e. press the “Refresh model list” button). 

The status of the existing models can be verified by providing the id of the mode in the 

Model Id field and pressing the “Check Status” button. These controls are marked with the 

blue colour in Figure 27. The model Id is displayed in the first column of the model list table. 

The same functionality can be used to verify if the model learning was completed or not.  

At the bottom of the screen, the list of the existing models is displayed. The deletion of an 

existing model can be performed by selecting the required model within the model list table 

and pressing the “Delete Selected Model” button (marked with green colour). 
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5.3.2 Test enrichment panel 

The enrichment models created at the end of the process described in the previous section 

can be used to enrich metadata collections available in ESE format. Anyway, this is a time 

consuming activity and the librarians using these services would need to test them before 

performing the enrichment of large collections. They might also need to test if the system 

was able to learn the models for the given training set. The test enrichment panel was 

created especially for supporting this kind of tasks (see Figure 28). It allows the user to 

select a model and to use it for improving the description of a selected item. Differently 

from the collection enrichment panels (knowledge extraction, metadata classification), this 

panel retrieves the objects from the ASSETS servers and not from a metadata file (because 

the invocation of the search object functionality is required to support this task).  

The process of testing the enrichment consists of 3 steps: 

• Select enrichment model. The enrichment model combo box displays all 

enrichment models available in the system, and the user has to select one model for 

testing it. See Section 5.3.1 for details on model learning task. 

• Select object for enrichment. The user has the possibility to select an item for 

enrichment by browsing items in a given collection or by using the advanced search 

functionality. For object browsing, a collection available on the ASSETS server must 

be selected and the items will be retrieved by pressing the “Get Objects” button 

(see controls in red box). Alternatively, the user might search for items of a given 

data provider by providing a free text query, selecting the index fields to search for 

and pressing the “Search Objects” button (see controls in the blue box). The objects 

retrieved from the server will be displayed in the overview table, where basic 

information for the item identification is displayed (i.e. title, language, creator, year, 

uri). The item used for enrichment will be selected by clicking the corresponding 

row in the object table.  

• Perform enrichment & check results. The enrichment is performed on the server 

after pressing the “Enrich Object” button and the result is displayed in the 

enrichment panel (see Figure 29). The knowledge extraction enrichment indicates 

the type of information inferred by the model, the text and the context in which this 

concept was detected (see the green box). The testing of the enrichment models 

should be performed by a user that is familiar with both the collections objects and 

the content of the training set. It is not guaranteed that an possible enrichment will 

be proposed for each collection object. 
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Figure 28  Test enrichment screen – object selection 
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Figure 29  Test enrichment screen – enrichment result 

 

5.3.3 Knowledge extraction screen 

The goal of the knowledge extraction service is to enhance the description of the collection 

objects by identifying concepts in the free text descriptions that can be linked to external 

resources like Thesauri or Wiki pages. This is quite a time consuming task given the amount 

of metadata available and the number of concepts available in the free text descriptions. 

Given the fact that the objects available in the collection are semantically related to each 

other, it is very alike that an enrichment model will be appropriate for processing all objects 

in a collection.  

The knowledge extraction process consists of the execution of the following steps: 

• Upload metadata collection. The whole knowledge extraction processing is 

performed on the ASSETS server; therefore, uploading the collection files to the 

server is a prerequisite for the execution of the enrichment process. This is 

accomplished in the GUI by providing a collection file and pressing the “Upload File“ 

button (see Figure 30). The system does not allow uploading a metadata file two 

times on the server, but it allows performing the enrichment on the same collection 

files anytime it is needed. 

 

Figure 30  Knowledge extraction screen – enrichment invocation 

• Knowledge extraction. The metadata files available on the server are displayed in 

the Collection file combo box and can be used to perform the enrichment by 

selecting a suited enrichment model (only knowledge extraction models are 

displayed in the combo box) and pressing the “Enrich File” button. The user will be 

notified that the enrichment process has started and it may take several minutes 

until it will be finished. A second notification will appear when the enrichment is 

completed and a panel is displayed with the URLs available for downloading the 

enriched files (see Figure 31) 
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Figure 31  Knowledge extraction screen – enrichment results 

5.3.4 Metadata classification screen 

The metadata classification process is very similar to the knowledge extraction one (see 

5.3.3). The same steps needs to be performed, but a different type of enrichment is applied 

(i.e. only classification models are available in this panel) and the result of the enrichment 

process will be available in a different ESE field (See also results presented in Section 5.3.2 ). 

Similar to knowledge extraction, the whole processing is performed on the server and the 

results are available for download as an xml file. The user needs to upload the metadata file 

(by using the “Upload File” button) on the server prior to performing the classification (to be 

launched by using the “Enrich File” button). The enrichment process can take a few minutes 

to be completed, but this process is typically performed faster that the knowledge 

extraction. The metadata classification screenshot is presented in Figure 32. 
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Figure 32  Metadata classification screen 
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6. Evaluation of the services 

Regarding the accuracy of the automatic enrichment functionalities provided by the 

services, an evaluation has been conducted and this section reports the evaluation results. 

The evaluation uses datasets provided by the content providers of the ASSETS project and 

also from other Europeana content providers. Every dataset is composed by metadata 

records in which the information that is expected to be generated by the enrichment 

process is actually added to each metadata record by a human expert. The human-assigned 

values are used in the experiments for two purposes, as training data, or as test data, i.e., 

data with human assigned annotation are kept hidden to the automatic process and then 

compared to its outcome to determine the accuracy of the automatic process. 

Whether a metadata record is used as training data or as test data depends on the adopted 

experimental protocols. The evaluation is based on two of the most common experimental 

protocols used in scientific literature. The choice of which protocol to use in a specific case 

depends on the dataset size. 

For relatively small datasets (e.g., less than 1,000 metadata records), the adopted 

experimental protocol is leave-one-out validation. For a dataset of n metadata records, this 

protocol consists of running n training experiments using n-1 metadata records as the 

training set, and then to apply the learned classification/extraction model to the held-out 

record. The classification/extraction responses for each metadata records are collected and 

then compared with the original ones in order to measure the accuracy. 

For larger datasets, the adopted experimental protocol is k-fold cross validation. This 

protocol consists of splitting the dataset in k equally sized parts, and running k training 

experiments in which k-1 parts of the data set are used as training set and the held out part 

as test set. The classification/extraction responses for each part are collected and then 

compared with the original ones in order to measure the accuracy. 

As evaluation measure, we have adopted the F1 measure for both the classification and 

extraction tasks. The F1 measure (introduced in Section 2) is the standard evaluation 

measure in the domain of automatic text categorization and information extraction. We 

report here two usual versions of the measure: micro-averaged (F1
μ
) and macro-averaged 

(F1
M

) already described in Section 2. 

6.1 Knowledge extraction service 

For the knowledge extraction service we have run experiments on the following datasets: 

� INA: a collection of 10000 metadata records describing television recordings. The 

metadata records language is French, and the annotated concepts are Person, 

Organisation, and Location. Such a large number of records was available because 

the content provider had been already annotated this concepts in the metadata 

records before the ASSETS project. 

� Albeniz: a collection of 75 metadata records describing musical recordings. The 

metadata records language is Spanish, and the annotated concepts are Person, 

Organisation, Location, Musical composition, and Award. 
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� DW: a collection of 268 metadata records describing audio and video recording of 

event reports/documentaries. The metadata records language is English, and the 

annotated concepts are Person, Organisation, and Location. 

We have received samples of metadata records from other ASSETS partners, but any of 

those samples contained less than 30 records. With such a small number of records is  not 

suitable to perform a statistically relevant evaluation. 

Table 1 shows the summary of the results obtained from the various experiments. We have 

selected various subsets within INA dataset to show how F1 varies with respect to the 

training set size. The Albeniz collection obtained similar F1 values with respect to the INA 

dataset of similar size. The DW collection, though with a smaller training set size than INA, 

obtains very good results.  

After a manual inspection of the data, we have found that INA dataset in many cases suffers 

of partially annotation problem (e.g., only the last name of a person is annotated), while the 

DW dataset is almost free from this kind of errors, and very accurate.  

Considering the results obtained on the various training sets sizes on the INA dataset and 

the high accuracy obtained by the higher quality DW, we can recommend a minimum 

training set size of 200-500 records, depending on the expected quality of the annotation. 

 

Provider Dataset 

description 

Concepts Number of 

metadata 

records 

Experimental 

protocol 

F1
μ 

F1
M 

INA Collection of 

television 

recordings 

Person, 

Organisation, 

Location 

10000 10-fold cross 

validation 

.735 .638 

INA Collection of 

television 

recordings 

Person, 

Organisation, 

Location 

5000 10-fold cross 

validation 

.706 .602 

INA Collection of 

television 

recordings 

Person, 

Organisation, 

Location 

1000 10-fold cross 

validation 

.680 .560 

INA Collection of 

television 

recordings 

Person, 

Organisation, 

Location 

500 10-fold cross 

validation 

.540 .461 

INA Collection of 

television 

recordings 

Person, 

Organisation, 

Location 

100 leave-one-out .440 .232 

INA Collection of 

television 

recordings 

Person, 

Organisation, 

Location 

10 leave-one-out .121 .065 
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Albeniz Collection of 

musical 

recordings 

Person, 

Organisation, 

Location, Musical 

composition, 

Awards  

75 leave-one-out .466 .182 

DW Collection of 

video and audio 

recordings 

Person, 

Organisation, 

Location 

268 leave-one-out .738 .690 

Table 1: Results of experiments with the knowledge extraction service 

6.2 Metadata classification service 

For the metadata classification service we have run experiments on the following datasets: 

� INA: a collection of 10000 metadata records describing television recordings. The 

metadata records language is French, and the classification taxonomy is a set of 48 

thematic areas (e.g. “Humour”, “Musique”). Such a large number of records was 

available because the content provider had already been classified its metadata 

records before the ASSETS project. 

� Liberis: a collection of 6104 metadata records in Greek. Records are classified using 

a taxonomy with 6 thematic classes. 

� ANSC: a collection of 15559 metadata records in Italian, describing audio/musical 

recordings. The classification taxonomy is composed of 522 genre-related classes 

(e.g., “Danze”, “Canto narrativo”, “Rito”, “Ninna nanna”). 

� Albeniz: a collection of 75 metadata records describing musical recordings. The 

metadata records language is Spanish, and they are classified under 7 thematic 

classes. 

� HASC: a collection of 1665 metadata records in Greek. Records describe artefacts, 

which are classified using a taxonomy with 32 classes (e.g., “Οχήματα - Επιβατικά 

αυτοκίνητα”: “vehicles – automobiles”). 

� FLM: a collection of 786 metadata records in Italian. Records describe industrial 

artefacts and are classified using a taxonomy with 4 classes. 

� CVCE: a collection of 17463 metadata records describing various media content 

(audio, text, image, video), with title and description expressed in multiple 

languages (English, French, German). They are linked to 1328 entries of the Eurovoc 

thesaurus, which is used as the classification schema.  

 

Table 2 shows the summary of the results obtained from the various experiments.  

Also for the classification service the experiments with different-sized training sets on the 

INA collection show that 500-1000 metadata records is a good lower limit for the training 

set size. Experiments on the other datasets also indicate that, when sizing the training set, 

the user has to take into account the number of classes that compose the taxonomy: the 
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larger the taxonomy the larger should be the training set.  

One relevant fact is that distribution of metadata records among classes usually follow a 

power law, with few classes with a large number of records assigned and many classes with 

just a few metadata records assigned. This effect is more evident when there are a large 

number of categories, with many of them represented by very few training examples.  

The ANSC collection, for example, obtains a very low F1
M

 value, though it has many training 

examples, because about 200 classes out of 522 have less than 100 examples. On the 

contrary, the Albeniz collection, though very small, obtains a very high F1
M

 value because its 

7 classes are almost uniformly distributed in the training set.  

On the CVCE dataset we scored average quality results, which is however a positive results 

given the large number of classes involved. 

Provider Number of 

classes 

Number of 

metadata records 

Experimental 

protocol 

F1
μ 

F1
M 

INA 48 10000 10-fold cross 

validation 

.647 .300 

INA 48 1000 10-fold cross 

validation 

.568 .240 

INA 48 500 10-fold cross 

validation 

.430 .180 

INA 48 100 leave-one-out .231 .118 

Liberis 6 6104 10-fold cross 

validation 

.667 .343 

ANSC 522 15559 10-fold cross 

validation 

.465 .130 

Albeniz 7 75 leave-one-out .842 .839 

HASC 32 1665 10-fold cross 

validation 

.424 .144 

FLM 4 786 leave-one-out .993 .745 

CVCE 1378 17463 10-fold cross 

validation 

.592 .286 

Table 2: Results of experiments with the metadat classification service on collections 

provided by ASSETS partners. 

For the classification service, we have also been able to run evaluation experiments on some 

of the collections that are already part of Europeana, since some of them contained a 

consistent use of the dc:subject field to identify the topic of the content described by each 

metadata record using a controlled number of labels.  
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Results of this evaluation are reported in Table 3. In these cases all the collections have 

obtained good F1
μ
 values but low F1

M
 values. After a manual inspection of the data, we 

motivate it by the fact that sometimes the dc:subject field contains spurious values related 

to other fields, e.g., the name of the author, and these values are not consistently assigned 

to records, resulting in training a classifier only for some classes with very poor training 

data. 

 

Collection name Taxonomy 

description 

Numbe

r of 

classes 

Number of 

metadata 

records 

Experimental 

protocol 

F1
μ 

F1
M 

DeutscheFotothek-1 Photos/ 

Images 

1999 1097321 10-fold cross 

validation 

.632 .132 

DeutscheFotothek-2 Photos/ 

Images 

220 529482 10-fold cross 

validation 

.744 .170 

landesarchiv Photos/ 

Images 

2442 10407 10-fold cross 

validation 

.292 .191 

Table 3: Results of experiments with the metadata classification service on 

collections that are already part of Europeana. 
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7. Concluding Remarks  

The knowledge extraction and classification services, encapsulated into the ingestion 

workflow management, enable users to leverage on machine learning technique to 

automatically enrich the description of their collection objects. 

The services described in this deliverable will support the enrichment processes to be used 

in application scenarios in which a user is willing to add well formatted structures to the 

information implicitly contained in free texts  Given a large collection, a user without access 

to the ingestion services has no alternative but to manually process the entire collection.  By 

using the ingestion services, the user can benefit the manual work done on a part of the 

collection to automatically process the rest of the collection. 

We have run scientific experiments in order to determine the quality of the enrichment 

automatically performed by the services, finding that training set of about 500 metadata 

records can already produce quite an accurate output. Moreover, even in the case the 

output of the services is required to pass a stage of human inspection, the task of validating 

the automatic decisions taken by the services is much less demanding than performing 

manual annotation from scratch.  

Finally, the outcome of the “evaluation of the ASSETS professional services” activity, 

performed by ASSETS content provider in order to enrich their metadata, will give further 

insight on the pros and cons of using automatic annotation tools in the ingestion workflow. 
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8. Appendix A 

8.1 Traning set XSD schema for the knowledge extraction service 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

           xmlns:tns="http://www.assets4europeana.eu/ExtractionSchema" 

           targetNamespace="http://www.assets4europeana.eu/ExtractionSchema" 

           elementFormDefault="qualified" 

xmlns:ese="http://www.europeana.eu/schemas/ese/"> 

  <xs:import namespace="http://www.europeana.eu/schemas/ese/" 

             schemaLocation="http://www.europeana.eu/schemas/ese/ESE-V3.3.xsd" /> 

 

  <xs:element name="extractionTrainingSet" 

type="tns:extractionTrainingSetComplexType"> 

  </xs:element> 

 

  <xs:complexType name="extractionTrainingSetComplexType"> 

    <xs:sequence> 

      <xs:element name="extractionTask" type="tns:extractionTaskComplexType"> 

      </xs:element> 

      <xs:element name="examples" type="tns:examplesComplexType"> 

      </xs:element> 

    </xs:sequence> 

  </xs:complexType> 

 

  <xs:complexType name="extractionTaskComplexType"> 

    <xs:sequence> 

      <xs:element name="sourceFieldName" type="xs:string"></xs:element> 

      <xs:element name="conceptSet" type="tns:conceptSetComplexType"> 

      </xs:element> 

    </xs:sequence> 

  </xs:complexType> 

 

  <xs:complexType name="conceptSetComplexType"> 

    <xs:sequence> 

      <xs:element name="name" type="xs:string"></xs:element> 

      <xs:element name="URI" type="xs:anyURI" minOccurs="0"></xs:element> 

      <xs:element name="concepts" type="tns:conceptsComplexType"></xs:element> 

    </xs:sequence> 

  </xs:complexType> 

 

  <xs:complexType name="conceptsComplexType"> 

    <xs:sequence> 

      <xs:element name="concept" type="tns:conceptComplexType" 

                  maxOccurs="unbounded"> 
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      </xs:element> 

    </xs:sequence> 

  </xs:complexType> 

 

  <xs:complexType name="conceptComplexType"> 

    <xs:sequence> 

      <xs:element name="name" type="xs:string"></xs:element> 

      <xs:element name="URI" type="xs:anyURI" minOccurs="0"></xs:element> 

      <xs:element name="targetField" type="xs:string" minOccurs="0"></xs:element> 

    </xs:sequence> 

  </xs:complexType> 

 

  <xs:complexType name="examplesComplexType"> 

    <xs:sequence> 

      <xs:element name="example" type="tns:exampleComplexType" 

                  maxOccurs="unbounded"> 

      </xs:element> 

    </xs:sequence> 

  </xs:complexType> 

 

  <xs:complexType name="exampleComplexType"> 

    <xs:sequence> 

      <xs:element name="record" type="tns:recordComplexType"> 

      </xs:element> 

      <xs:element name="extractedConcept" type="tns:extractedConceptComplexType" 

                  maxOccurs="unbounded"></xs:element> 

    </xs:sequence> 

  </xs:complexType> 

 

  <xs:complexType name="extractedConceptComplexType"> 

    <xs:sequence> 

      <xs:element name="name" type="xs:string"></xs:element> 

      <xs:element name="extractedText" type="xs:string"></xs:element> 

      <xs:element name="position" minOccurs="0"> 

        <xs:complexType> 

          <xs:choice> 

            <xs:element name="context" type="xs:string"></xs:element> 

            <xs:sequence> 

              <xs:element name="startCharacterPosition" 

type="xs:positiveInteger"></xs:element> 

              <xs:element name="endCharacterPosition" 

type="xs:positiveInteger"></xs:element> 

            </xs:sequence> 

          </xs:choice> 

        </xs:complexType> 

      </xs:element> 

      <xs:element name="URI" type="xs:anyURI" minOccurs="0"></xs:element> 

    </xs:sequence> 



 

ASSETS Ingestion Services – 2nd release                           Page 85 D2.1.3 V1.3 

 

  </xs:complexType> 

 

  <xs:complexType name="recordComplexType"> 

    <xs:sequence> 

      <xs:element ref="ese:record" /> 

    </xs:sequence> 

  </xs:complexType> 

 

</xs:schema> 

8.2 Training set XML example for the knowledge extraction service 

<?xml version="1.0" encoding="UTF-8"?> 

<extractionTrainingSet xmlns="http://www.example.org/ExtractionSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://www.example.org/ExtractionSchema ExtractionSchema.xsd 

"> 

  <!-- This section defines the extraction task performed on the records --> 

  <extractionTask> 

    <!-- This is the name of the field of the records from which information has to be 

extracted --> 

    <sourceFieldName>description</sourceFieldName> 

    <conceptSet> 

      <!-- This is a descriptive name for the extraction task --> 

      <name>NER for persons, organizations and locations</name> 

      <!-- Optional pointer to a resource that describes the concept set --> 

      <URI>http://en.wikipedia.org/wiki/Named_entity_recognition</URI> 

      <concepts> 

        <concept> 

          <!-- Name of the concept to be extracted --> 

          <name>person</name> 

          <!-- Optional pointer to a resource describing the concept --> 

          <URI>http://en.wikipedia.org/wiki/Person</URI> 

          <!-- Optional name of the target field in the record that has to be filled with 

extracted information --> 

          <targetField>extractedPerson</targetField> 

        </concept> 

        <concept> 

          <name>organization</name> 

          <URI>http://en.wikipedia.org/wiki/Organization</URI> 

          <targetField>extractedOrganization</targetField> 

        </concept> 

        <concept> 

          <name>location</name> 

          <URI>http://en.wikipedia.org/wiki/Place_(geography)</URI> 

          <targetField>extractedLocation</targetField> 

        </concept> 

      </concepts> 
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    </conceptSet> 

  </extractionTask> 

  <examples> 

    <example> 

      <record> 

        <europeanaRecord> 

          <title>Lamp</title> 

          <description>Thomas Edison invented the filament lamp in America at almost the 

same time as Joseph Swan did in England. He produced this type of lamp in 1880. This 

particular bulb comes from Pullar's Dye Works in Perth, one of the first buildings in 

Australia to install Edison lights.</description> 

          <source>Tyne and Wear Imagine</source> 

          <provider>CultureGrid ;  Uk</provider> 

          

<identifier>http://www.imagine.org.uk/details/index.php?id=TWCMS:B5141a</identifie

r> 

          <subject> inventors and innovators;  people</subject> 

          <type>Image</type> 

        </europeanaRecord> 

      </record> 

      <extractedConcept> 

        <name>person</name> 

        <extractedText>Thomas Edison</extractedText> 

        <!-- A position specification is required when multiple instances of the extracted text 

appear in the field with different role. In this case no position is required.--> 

        <!-- In the case a position is necessary, it can be expressed by copying the extracted 

text with enough surrounding text in order to make it uniquely identifiable. See examples 

in  following concept extractions.--> 

        <URI>http://viaf.org/viaf/66552944/#Edison, Thomas A. (Thomas Alva), 1847-

1931</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>location</name> 

        <extractedText>America</extractedText> 

        <!-- Also for this case the position is not required. It is just reported as an example. --

> 

        <position> 

          <context>lamp in America at almost</context> 

        </position> 

        <URI>http://www.geonames.org/maps/google_39.76_-98.5.html</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>person</name> 

        <extractedText>Joseph Swan</extractedText> 

        <!-- Position can also be expressed as the offset in number of characters from the 

beginning of the text in the field. --> 

        <position> 

          <startCharacterPosition>80</startCharacterPosition> 
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          <endCharacterPosition>91</endCharacterPosition> 

        </position> 

        <URI>http://viaf.org/viaf/15100261/#Swan, Joseph Wilson, 1828-1914</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>location</name> 

        <extractedText>England</extractedText> 

        <URI>http://www.geonames.org/2635167/united-kingdom-of-great-britain-and-

northern-ireland.html</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>organization</name> 

        <extractedText>Pullar's Dye Works</extractedText> 

        

<URI>http://canmore.rcahms.gov.uk/en/site/127331/details/perth+pullar+s+dyeworks/

</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>location</name> 

        <extractedText>Perth</extractedText> 

        <URI>http://www.geonames.org/2063523/perth.html</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>location</name> 

        <extractedText>Australia</extractedText> 

        <URI>http://www.geonames.org/2077456/commonwealth-of-australia.html</URI> 

      </extractedConcept> 

      <extractedConcept> 

        <name>person</name> 

        <extractedText>Edison</extractedText> 

        <position> 

          <context>to install Edison lights</context> 

        </position> 

        <URI>http://viaf.org/viaf/66552944/#Edison, Thomas A. (Thomas Alva), 1847-

1931</URI> 

      </extractedConcept> 

    </example> 

  </examples> 

</extractionTrainingSet> 
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9. Appendix B 

9.1 Traning set XSD schema for the metadata classification service 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 

           xmlns:tns="http://www.assets4europeana.eu/ClassificationSchema" 

           targetNamespace="http://www.assets4europeana.eu/ClassificationSchema" 

           elementFormDefault="qualified" 

xmlns:ese="http://www.europeana.eu/schemas/ese/"> 

  <xs:import namespace="http://www.europeana.eu/schemas/ese/" 

             schemaLocation="http://www.europeana.eu/schemas/ese/ESE-V3.3.xsd" /> 

  <xs:element name="classificationTrainingSet" 

type="tns:classificationTrainingSetComplexType"> 

  </xs:element> 

 

  <xs:complexType name="classificationTrainingSetComplexType"> 

    <xs:sequence> 

      <xs:element name="classificationSchema" 

type="tns:classificationSchemaComplexType"> 

      </xs:element> 

      <xs:element name="examples" type="tns:examplesComplexType"> 

      </xs:element> 

    </xs:sequence> 

  </xs:complexType> 

 

  <xs:complexType name="classificationSchemaComplexType"> 

    <xs:sequence> 

      <xs:element name="name" type="xs:string"></xs:element> 

      <xs:element minOccurs="0" name="URI" type="xs:anyURI"> 

      </xs:element> 

      <xs:element name="type" default="multiLabel"> 

        <xs:simpleType> 

          <xs:restriction base="xs:string"> 

            <xs:enumeration value="multiLabel" /> 

            <xs:enumeration value="singleLabel" /> 

          </xs:restriction> 

        </xs:simpleType> 

      </xs:element> 

      <xs:element name="classes" type="tns:classesComplexType"> 

      </xs:element> 

    </xs:sequence> 

  </xs:complexType> 

 

  <xs:complexType name="examplesComplexType"> 

    <xs:sequence> 
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      <xs:element name="example" type="tns:exampleComplexType" 

                  maxOccurs="unbounded"> 

      </xs:element> 

    </xs:sequence> 

  </xs:complexType> 

 

  <xs:complexType name="classesComplexType"> 

    <xs:sequence> 

      <xs:element maxOccurs="unbounded" name="class" 

                  type="tns:classComplexType"> 

      </xs:element> 

    </xs:sequence> 

  </xs:complexType> 

 

  <xs:complexType name="classComplexType"> 

    <xs:sequence> 

      <xs:element name="name" type="xs:string"></xs:element> 

      <xs:element minOccurs="0" name="URI" type="xs:anyURI"> 

      </xs:element> 

      <xs:element minOccurs="0" name="parentClassName" type="xs:string"> 

      </xs:element> 

    </xs:sequence> 

  </xs:complexType> 

 

  <xs:complexType name="exampleComplexType"> 

    <xs:sequence> 

      <xs:element name="record" type="tns:recordComplexType"> 

      </xs:element> 

      <xs:element name="assignedClass" type="xs:string" 

                  minOccurs="0" maxOccurs="unbounded"></xs:element> 

    </xs:sequence> 

  </xs:complexType> 

 

  <xs:complexType name="recordComplexType"> 

    <xs:sequence> 

      <xs:element ref="ese:record" /> 

    </xs:sequence> 

  </xs:complexType> 

 

</xs:schema> 

9.2 Training set XML example for the metadata classification service 

<?xml version="1.0" encoding="UTF-8"?> 

<classificationTrainingSet xmlns="http://www.example.org/ClassificationSchema" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://www.example.org/ClassificationSchema 

ClassificationSchema.xsd "> 
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  <!-- This section defines the  --> 

  <classificationSchema> 

    <!-- A meaningful name for the classification schema --> 

    <name>a simple music genre classificiation schema</name> 

    <!-- Optional URI pointing to a description of the classification schema --> 

    <URI>http://en.wikipedia.org/wiki/Music_genre</URI> 

    <!-- Type of classification schema 

         multiLabel: each record can be assigned to zero, one, or more than one class 

         singleLabel: each record has to be assigned to one and only one class 

    --> 

    <type>singleLabel</type> 

    <!-- List of classes --> 

    <classes> 

      <!-- Definition of a class --> 

      <class> 

        <!-- Class name --> 

        <name>classical</name> 

        <!-- Optional URI describing the class --> 

        <URI>http://en.wikipedia.org/wiki/Classical_music</URI> 

      </class> 

      <class> 

        <name>baroque</name> 

        <URI>http://en.wikipedia.org/wiki/Baroque_music</URI> 

        <!-- The classification schema could be hierachical. In this case "baroque" is a more 

specific definition of a classical music genre. --> 

        <!-- If a record is assigned to baroque it is implicitly also an example of classical 

music. --> 

        <!-- If a record is assigned to classical it means that, though the record refers to 

classical music,  it does not belong to anyone of the more specific classes. --> 

        <parentClassName>classical</parentClassName> 

      </class> 

      <class> 

        <name>modern</name> 

        <URI>http://en.wikipedia.org/wiki/20th-century_classical_music</URI> 

        <parentClassName>classical</parentClassName> 

      </class> 

      <class> 

        <name>romantic</name> 

        <URI>http://en.wikipedia.org/wiki/Romantic_music</URI> 

        <parentClassName>classical</parentClassName> 

      </class> 

      <class> 

        <name>jazz</name> 

        <URI>http://en.wikipedia.org/wiki/Jazz</URI> 

      </class> 

      <class> 

        <name>bebop</name> 

        <URI>http://en.wikipedia.org/wiki/Bebop</URI> 
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        <parentClassName>jazz</parentClassName> 

      </class> 

      <class> 

        <name>funky</name> 

        <URI>http://en.wikipedia.org/wiki/Funk</URI> 

        <parentClassName>jazz</parentClassName> 

      </class> 

      <class> 

        <name>swing</name> 

        <URI>http://en.wikipedia.org/wiki/Swing_music</URI> 

        <parentClassName>jazz</parentClassName> 

      </class> 

      <class> 

        <name>popular</name> 

        <URI>http://en.wikipedia.org/wiki/Popular_music</URI> 

      </class> 

      <class> 

        <name>country</name> 

        <URI>http://en.wikipedia.org/wiki/Country_music</URI> 

        <parentClassName>popular</parentClassName> 

      </class> 

      <class> 

        <name>punk</name> 

        <URI>http://en.wikipedia.org/wiki/Punk_rock</URI> 

        <parentClassName>popular</parentClassName> 

      </class> 

      <class> 

        <name>rap</name> 

        <URI>http://en.wikipedia.org/wiki/Hip_hop_music</URI> 

        <parentClassName>popular</parentClassName> 

      </class> 

    </classes> 

  </classificationSchema> 

  <examples> 

    <example> 

      <record> 

        <recording> 

          <title>The Marriage of Figaro</title> 

          <author>Wolfgang Amadeus Mozart</author> 

          <year>1943</year> 

          <director>Paul Breisach</director> 

          <orchestra>Metropolitan Opera Orchestra</orchestra> 

          <location>New York</location> 

        </recording> 

      </record> 

      <assignedClass>classical</assignedClass> 

    </example> 

    <example> 
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      <record> 

        <recording> 

          <title> Brandenburg Concerto No. 1 - 1</title> 

          <author>Johann Sebastian Bach</author> 

          <orchestra>The Busch Chamber Players</orchestra> 

          <URI>http://en.wikipedia.org/wiki/File:Bach_-_Brandenburg_Concerto_No._1_-

_1._Allegro.ogg</URI> 

        </recording> 

      </record> 

      <assignedClass>baroque</assignedClass> 

    </example> 

    <example> 

      <record> 

        <recording> 

          <title>Für Elise</title> 

          <title>Bagatelle No. 25 in A minor</title> 

          <author>Ludwig van Beethoven</author> 

          <year>1867</year> 

        </recording> 

      </record> 

      <assignedClass>romantic</assignedClass> 

    </example> 

    <example> 

      <record> 

        <recording> 

          <title>Salt Peanuts</title> 

          <composed>1942</composed> 

          <year>1947</year> 

          <author>Dizzy Gillespie</author> 

          <description>Dizzy played for Lucky Millinder's band in the early '40s. It was a riff 

this band played, after a Dizzy solo in the tune "Little John Special", that Dizzy developed 

into his tune "Salt Peanuts".</description> 

          <URI>http://www.youtube.com/watch?v=kOmA8LOw258</URI> 

        </recording> 

      </record> 

      <assignedClass>bebop</assignedClass> 

    </example> 

    <example> 

      <record> 

        <recording> 

          <title>Gotta Lotta Love</title> 

          <author>Tracy Marrow</author> 

          <author>Ice-T</author> 

          <album>Home invasion</album> 

          <year>1993</year> 

        </recording> 

      </record> 

      <assignedClass>rap</assignedClass> 
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    </example> 

    <example> 

      <record> 

        <recording> 

          <title>The river unbroken</title> 

          <author>Dolly Rebecca Parton</author> 

          <year>1987</year> 

          <album>Rainbox</album> 

          <label>CBS</label> 

          <producer>Steve "Gold-E" Goldstein</producer> 

        </recording> 

      </record> 

      <assignedClass>country</assignedClass> 

    </example> 

  </examples> 

</classificationTrainingSet> 


